
pySYD Documentation
Release 6.10.5

Ashley Chontos and contributors

Jul 28, 2023

SOFTWARE

1 Getting started 3
1.1 Installation . 3
1.2 Dependencies . 4
1.3 Setup . 5
1.4 Quickstart . 6
1.5 Fun . 7

2 Crashteroseismology 9
2.1 A quick timeout . 9
2.2 A crash course in asteroseismology . 9
2.3 Running your favorite star . 17

3 pySYD library 19
3.1 Introduction . 19
3.2 pySYD paths . 23
3.3 pySYD inputs . 24
3.4 Software modes . 28
3.5 Target class . 32
3.6 Models & utilities . 45
3.7 Saved outputs . 55
3.8 What next? . 61
3.9 TL;DR . 61

4 User guide 63
4.1 Introduction . 63
4.2 Single star applications . 69
4.3 Star sample . 84
4.4 Advanced options . 84
4.5 Interactive usage . 89
4.6 pySYD option glossary . 102
4.7 et al. 112

5 Glossary of documentation terms 113

6 Vision of the pySYD project 117

7 Attribution 119
7.1 Citations . 119
7.2 Projects w/ pySYD . 120

8 Contributing 121

i

8.1 The pySYD team . 121
8.2 Community guidelines . 122

Bibliography 125

Python Module Index 127

Index 129

ii

pySYD Documentation, Release 6.10.5

Asteroseismology, or the study of stellar oscillations, is a powerful tool for studying the internal structure of stars
and determining their fundamental properties. For stars similar to the Sun, turbulent near-surface convection excites
sound waves that propagate within the stellar cavity, and hence provides powerful constraints on stellar interiors that are
inaccessible by any other means. Asteroseismology is now widely-accepted as the gold standard for the characterization
of fundamental stellar properties (e.g., masses, radii, ages, etc.). In an effort to make asteroseismology more accessible
to the broader astronomy community, pySYD was developed as a Python package to automatically detect solar-like
oscillations and characterize their global properties.

Important: The pySYD documentation is currently being revamped – we apologize in advance for any inconveniences
this may cause but appreciate your understanding!

This package is being actively developed in a public repository on GitHub – we especially welcome and encourage any
new contributions to help make pySYD better! Please see our community guidelines to find out how you can help. No
contribution is too small!

SOFTWARE 1

https://github.com/ashleychontos/pySYD

pySYD Documentation, Release 6.10.5

2 SOFTWARE

CHAPTER

ONE

GETTING STARTED

Jump to quickstart

1.1 Installation

There are three main ways you can install the software:

1. Install via PyPI

2. Create an environment

3. Clone directly from GitHub

Note: The recommended way to install this package is from PyPI via pip, since it will automatically enforce
the proper dependencies and versions

1.1.1 Use pip

The pySYD package is available on the Python Package Index (PyPI) and therefore you can install the latest stable
version directly using pip:

$ python -m pip install pysyd

The pysyd binary should have been automatically placed in your system’s path via the pip command. To check the
command-line installation, you can use the help command in a terminal window, which should display something
similar to the following output:

$ pysyd --help

usage: pySYD [-h] [--version] {check,fun,load,parallel,plot,run,setup,test} ...

pySYD: automated measurements of global asteroseismic parameters

options:
-h, --help show this help message and exit
--version Print version number and exit.

(continues on next page)

3

https://pypi.org/project/pysyd/

pySYD Documentation, Release 6.10.5

(continued from previous page)

pySYD modes:
{check,fun,load,parallel,plot,run,setup,test}
check Check data for a target or other relevant information
fun Print logo and exit
load Load in data for a given target
parallel Run pySYD in parallel
plot Create and show relevant figures
run Run the main pySYD pipeline
setup Easy setup of relevant directories and files
test Test current installation

If your system can not find the pysyd executable, change into the top-level pysyd directory and try running the fol-
lowing command:

$ python setup.py install

1.1.2 Create an environment

You can also use conda to create an environment. For this example, I’ll call it ‘astero’.

$ conda create -n astero numpy scipy pandas astropy matplotlib tqdm

See our complete list of dependencies (including versions) below. Then activate the environment and install pySYD:

$ conda activate astero
$ pip install git+https://github.com/ashleychontos/pySYD

1.1.3 Clone from GitHub

If you want to contribute, you can clone the latest development version from GitHub using git.

$ git clone git://github.com/ashleychontos/pySYD.git

The next step is to build and install the project:

$ python -m pip install .

which needs to be executed from the top-level directory inside the cloned pySYD repo.

1.2 Dependencies

This package has the following dependencies:

• Python (>=3)

• Numpy

• pandas

• Astropy

4 Chapter 1. Getting started

https://github.com/ashleychontos/pySYD
https://www.python.org
https://numpy.org
https://pandas.pydata.org
https://www.astropy.org

pySYD Documentation, Release 6.10.5

• scipy

• Matplotlib

• tqdm

Explicit version requirements are specified in the project requirements.txt and setup.cfg. However, using pip or conda
should install and enforce these versions automatically.

1.3 Setup

The software package comes with a convenient setup feature which we strongly encourage you to do because it:

• downloads example data for three stars

• provides the properly-formatted [optional] input files and

• sets up the relative local directory structure

Note: this step is helpful regardless of how you intend to use the software package.

1.3.1 Make a local directory

We recommend to first create a new, local directory to keep all your pysyd-related data, information and results in a
single, easy-to-find location. The folder or directory can be whatever is most convenient for you:

$ mkdir pysyd
$ cd pysyd

1.3.2 Initialize setup

Now all you need to do is change into that directory, run the following command and let pySYD do the rest of the work
for you!

$ pysyd setup -v

We used the verbose command so you can see what is being downloaded and where it is being downloaded to.

Downloading relevant data from source directory:
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 25 100 25 0 0 378 0 --:--:-- --:--:-- --:--:-- 378
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 810 100 810 0 0 11739 0 --:--:-- --:--:-- --:--:-- 11739
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 1518k 100 1518k 0 0 8930k 0 --:--:-- --:--:-- --:--:-- 8930k
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 3304k 100 3304k 0 0 11.4M 0 --:--:-- --:--:-- --:--:-- 11.4M
% Total % Received % Xferd Average Speed Time Time Time Current

(continues on next page)

1.3. Setup 5

https://docs.scipy.org/doc/
https://matplotlib.org/index.html#module-matplotlib
https://tqdm.github.io
https://github.com/ashleychontos/pySYD/requirements.txt
https://github.com/ashleychontos/pySYD/setup.cfg

pySYD Documentation, Release 6.10.5

(continued from previous page)

Dload Upload Total Spent Left Speed
100 1679k 100 1679k 0 0 9489k 0 --:--:-- --:--:-- --:--:-- 9489k
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 3523k 100 3523k 0 0 13.0M 0 --:--:-- --:--:-- --:--:-- 13.0M
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 1086k 100 1086k 0 0 7103k 0 --:--:-- --:--:-- --:--:-- 7103k
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 2578k 100 2578k 0 0 10.2M 0 --:--:-- --:--:-- --:--:-- 10.2M

Note(s):
- created input file directory at /Users/ashleychontos/pysyd/info
- saved an example of a star list
- saved an example for the star information file
- created data directory at /Users/ashleychontos/pysyd/data
- example data saved to data directory
- results will be saved to /Users/ashleychontos/pysyd/results

As shown above, example data and other relevant files were downloaded from the public GitHub repo.

If you forget or accidentally happen to run this again (in the same directory), you will get the following lovely reminder:

$ pysyd setup -v

Looks like you've probably done this
before since you already have everything!

1.4 Quickstart

Use the following to get up and running right away:

$ python -m pip install pysyd
$ mkdir pysyd
$ cd pysyd
$ pysyd setup [optional]

The last command which will provide you with example data and files to immediately get going. This is essentially a
summary of all the steps discussed on this page but a more consolidated version.

You are now ready to do some asteroseismology!

6 Chapter 1. Getting started

https://github.com/ashleychontos/pySYD

pySYD Documentation, Release 6.10.5

1.5 Fun

For some extra added fun and just because, type the following in your terminal or command prompt for a little surprise:

$ pysyd fun
|
|
| |
| |
| |

| || |
| || | |

1.5. Fun 7

pySYD Documentation, Release 6.10.5

8 Chapter 1. Getting started

CHAPTER

TWO

CRASHTEROSEISMOLOGY

2.1 A quick timeout

The examples on this page assume that the user already has some basic-level experience with Python and therefore
if not, we highly recommend that you first visit the Python website and going through some of their tutorials before
attempting ours.

We will work through two examples – each demonstrating a different application of the software. The first example
will run pySYD as a script from command line since this is what it was optimized for. We will break down each step of
the software as much as possible with the hope that it will provide a nice introduction to both the software and science.
For the second one, we will reconstruct everything in a more condensed version and show pySYD imported and used
as a module.

If you have any questions, check out our user guide for more information. If this still does not address your question
or problem, please do not hesitate to contact Ashley directly.

2.2 A crash course in asteroseismology

For purposes of this first example, we’ll assume that we don’t know anything about the star or its properties so that the
software runs from start to finish on its own. In any normal circumstance, however, we can provide additional inputs
like the center of the frequency range with the oscillations, or numax (𝜈max), that can bypass steps and save time.

2.2.1 Initialize script

When running pySYD from command line, you will likely use something similar to the following command:

pysyd run --star 1435467 -dv --ux 5000 --mc 200

which we will now deconstruct.

pysyd if you used pip install, the binary (or executable) should be available. In fact, the setup file defines the entry
point for pysyd, which is accessed through the pysyd.cli.main script – where you can also find all available
parsers and commands

run regardless of how you choose to use the software, the most common way you will likely implement pySYD is in
run mode – which, just as it sounds, will process stars in order. This is saved to the args parser NameSpace
as the mode, which will run the pipeline by calling pysyd.pipeline.run. There are currently five available
(tested) modes (with two more in development), all which are described in more detail here

9

https://docs.python.org/3/tutorial/
mailto:achontos@hawaii.edu

pySYD Documentation, Release 6.10.5

--star 1435467 here we are running a single star, KIC 1435467. You can also provide multiple targets, where the
stars will append to a list and then be processed consecutively. On the other hand, if no targets are provided,
the program would default to reading in the star or todo list (via info/todo.txt). Again, this is because the
software is optimized for running many stars.

-dv adapting Linux-like behavior, we reserved the single hash options for booleans which can all be grouped together
(as shown above). Here the -d and -v are short for display and verbose, respectively, and show the figures and
verbose output. For a full list of options available, please see our command-line glossary. There are dozens of
options to make your experience as customized as you’d like!

--ux 5000 this is an upper frequency limit for the first module that identifies the power eXcess due to solar-like
oscillations. In this case, there are high frequency artefacts that we would like to ignore. We actually made a
special notebook tutorial specifically on how to address and fix this problem. If you’d like to learn more about
this or are having a similar issue, please visit this page.

--mc 200 last but certainly not least - the mc (for Monte Carlo-like) option sets the number of iterations the pipeline
will run for. In this case, the pipeline will run for 200 steps, which allows us to bootstrap uncertainties on our
derived properties.

Note: For a complete list of options which are currently available via command-line interface (CLI), see our special
CLI glossary.

2.2.2 The steps

The software operates in roughly the following steps:

1. Load in parameters and data

2. Search and estimate initial values

3. Select best-fit stellar background model

4. Fit global parameters

5. Estimate uncertainties

For each step, we will first show the relevant block of printed (or verbose) output, then describe what the software is
doing behind the scenes and if applicable, conclude with the section-specific results (i.e. files, figures, etc.).

Warning: Please make sure that all input data are in the correct units in order for the software to provide reliable
results. If you are unsure, please visit this page for more information about formatting and input data.

1. Load in parameters and data

Target: 1435467

LIGHT CURVE: 37919 lines of data read
Time series cadence: 59 seconds
POWER SPECTRUM: 99518 lines of data read
PS oversampled by a factor of 5
PS resolution: 0.426868 muHz

10 Chapter 2. Crashteroseismology

pySYD Documentation, Release 6.10.5

During this step, it will take the star name along with the command-line arguments and create an instance of the pysyd.
target.Target object. Initialization of this class will automatically search for and load in data for the given star, as
shown in the output above. Both the light curve and power spectrum were available for KIC 1435467 and as you can
see in these cases, pySYD will use both arrays to compute additional information like the time series cadence, power
spectrum resolution, etc.

If there are issues during the first step, pySYD will flag this and immediately halt any further execution of the code. If
something seems questionable during this step but is not fatal for executing the pipeline, it will only return a warning. In
fact, all pysyd.target class instances will have an ok attribute - literally meaning that the star is ‘ok’ to be processed.
By default, the pipeline checks this attribute before moving on.

Since none of this happened, we can move on to the next step.

2. Search and estimate initial values

PS binned to 228 datapoints

Numax estimates

Numax estimate 1: 1440.07 +/- 81.33
S/N: 2.02
Numax estimate 2: 1513.00 +/- 50.26
S/N: 4.47
Numax estimate 3: 1466.28 +/- 94.06
S/N: 9.84
Selecting model 3

The main thing we need to know before performing the global fit is an approximate starting point for the frequency
corresponding to maximum power, or numax (𝜈max). Please read the next section for more information regarding this.

The software first makes a very rough approximation of the stellar background by binning the power spectrum in both
log and linear spaces (think a very HEAVY smoothing filter), which the power spectrum is then divided by so that we
are left with very little residual slope in the PS. The ‘Crude Background Fit’ is shown below in the second panel by the
lime green line. The background-corrected power spectrum (BCPS) is shown in the panel to the right.

2.2. A crash course in asteroseismology 11

pySYD Documentation, Release 6.10.5

Next pySYD uses a “collapsed” autocorrelation function (ACF) technique with different bin sizes to identify localized
power excess in the PS due to solar-like oscillations. By default, this is done three times (or trials) and hence, provides
three different estimates - which is typically sufficient for these purposes. The bottom row in the above figure shows
these three trials, highlighting the one that was selected, or the one with the highest signal-to-noise (S/N).

Finally, it saves the best estimates in a csv file for later use, which can be used to bypass this step the next time that the
star is processed.

Table 1: 1435467 parameter estimates
stars numax dnu snr
1435467 1466.27585610943 73.4338977674559 9.84295865829856

3. Select best-fit stellar background model

GLOBAL FIT

PS binned to 333 data points

Background model

Comparing 6 different models:
Model 0: 0 Harvey-like component(s) + white noise fixed
BIC = 981.66 | AIC = 2.95
Model 1: 0 Harvey-like component(s) + white noise term

(continues on next page)

12 Chapter 2. Crashteroseismology

pySYD Documentation, Release 6.10.5

(continued from previous page)

BIC = 1009.56 | AIC = 3.02
Model 2: 1 Harvey-like component(s) + white noise fixed
BIC = 80.27 | AIC = 0.22
Model 3: 1 Harvey-like component(s) + white noise term
BIC = 90.49 | AIC = 0.24
Model 4: 2 Harvey-like component(s) + white noise fixed
BIC = 81.46 | AIC = 0.20
Model 5: 2 Harvey-like component(s) + white noise term
BIC = 94.36 | AIC = 0.23
Based on BIC statistic: model 2

A bulk of the heavy lifting is done in this main fitting routine, which is actually done in two separate steps: 1) modeling
and characterizing the stellar background and 2) determining the global asteroseismic parameters. We do this separately
in two steps because they have fairly different properties and we wouldn’t want either of the estimates to be influenced
by the other in any way.

Ultimately the stellar background has more of a “presence” in the power spectrum in that, dissimilar to solar-like
oscillations that are observed over a small range of frequencies, the stellar background contribution is observed over all
frequencies. Therefore by attempting to identify where the oscillations are in the power spectrum, we can mask them
out to better characterize the background.

We should take a sidestep to explain something important that is happening behind the scenes. A major reason why
the predecessor to pySYD, IDL-based SYD, was so successful was because it assumed that the estimated numax and
granulation timescales could be scaled with the Sun – a fact that was not known at the time but greatly improved its
ability to quickly and efficiently process stars. This is clearly demonstrated in the 2nd and 3rd panels in the figure
below, where the initial guesses are strikingly similar to the fitted model.

While this scaling relation ensured great starting points for the background fit, SYD still required a lot fine-tuning by
the user. Therefore we adapted the same approach but instead implemented an automated background model seletion.
After much trial and error, the BIC seems to perform better for our purposes - which is now the default metric used
(but can easily be changed, if desired).

Measuring the granulation time scales is obviously limited by the total observation baseline of the time series but in
general, we can resolve up to 3 Harvey-like components (or laws) at best (for now anyway). For more information about
the Harvey model, please see the original paper1 as well as its application in context .

Therefore we use all this information to guess how many we should observe and end up with

𝑛models = 2 · (𝑛laws + 1)

models for a given star. The fact of 2 is because we give the options to fix the white noise or for it to also be a free
parameter. The +1 (times 2) is because we also want to consider the simplest model i.e. where we are not able to resolve
any. From our perspective, the main purpose of implementing this was to try to identify null detections, since we do
not expect to observe oscillations in every star. However, this is a work in progress and we are still trying various
methods to identify and quantify non-detections. Therefore if you have any ideas, please reach out to us!
For this example we started with two Harvey-like components but the automated model selection preferred a simpler
one consisting of a single Harvey law. In addition, the white noise was fixed and not a free parameter and hence, the
final model had 3 less parameters than it started with. For posterity, we included the output if only a single iteration
had been run (which we recommend by default when analyzing a star for the first time).

1 Harvey (1985)

2.2. A crash course in asteroseismology 13

https://ui.adsabs.harvard.edu/abs/1985ESASP.235..199H

pySYD Documentation, Release 6.10.5

Note: For more information about what each panel is showing in any of these figures, please visit this page.

14 Chapter 2. Crashteroseismology

pySYD Documentation, Release 6.10.5

4. Fit global parameters

If this was executed with its default mc setting (== 1, for a single iteration), the output parameters would look like that
shown below. In fact, we encourage folks to run new stars for a single step first (*ALWAYS*) before running it
several iterations to make sure everything checks out.

Output parameters

numax_smooth: 1299.81 muHz
A_smooth: 1.74 ppm^2/muHz
numax_gauss: 1344.46 muHz
A_gauss: 1.50 ppm^2/muHz
FWHM: 294.83 muHz
dnu: 70.68 muHz
tau_1: 234.10 s
sigma_1: 87.40 ppm

- displaying figures
- press RETURN to exit
- combining results into single csv file

Reminder: the printed output above is for posterity. Please see the next section in the event that you are comparing
outputs to test the software functionality.

The parameters are printed and saved in identical ways (sans the uncertainties).

Table 2: 1435467 global parameters
parameter value uncertainty
numax_smooth 1299.81293631 –
A_smooth 1.74435577479371 –
numax_gauss 1344.46209203309 –
A_gauss 1.49520571806361 –
FWHM 294.828524961042 –
dnu 70.6845197924864 –
tau_1 234.096929937095 –
sigma_1 87.4003388623678 –

5. Estimate uncertainties

Sampling routine:
100%|| 200/200 [00:21<00:00, 9.23it/s]

Output parameters

numax_smooth: 1299.81 +/- 56.64 muHz
A_smooth: 1.74 +/- 0.19 ppm^2/muHz
numax_gauss: 1344.46 +/- 41.16 muHz
A_gauss: 1.50 +/- 0.24 ppm^2/muHz
FWHM: 294.83 +/- 64.57 muHz

(continues on next page)

2.2. A crash course in asteroseismology 15

pySYD Documentation, Release 6.10.5

(continued from previous page)

dnu: 70.68 +/- 0.82 muHz
tau_1: 234.10 +/- 23.65 s
sigma_1: 87.40 +/- 2.81 ppm

- displaying figures
- press RETURN to exit
- combining results into single csv file

Notice the difference in the printed parameters this time - which now have uncertainties!

^^ The figure above shows parameter posteriors for KIC 1435467. Sampling results can be saved by using the
boolean flag -z or --samples, which will store the samples for the fitted parameters as comma-separated values using

16 Chapter 2. Crashteroseismology

pySYD Documentation, Release 6.10.5

pandas.

Table 3: 1435467 global parameters
parameter value uncertainty
numax_smooth 1299.81293631 56.642346824238
A_smooth 1.74435577479371 0.191605473120388
numax_gauss 1344.46209203309 41.160592041828
A_gauss 1.49520571806361 0.236092716197938
FWHM 294.828524961042 64.57265346103
dnu 70.6845197924864 0.821246814829682
tau_1 234.096929937095 23.6514289023765
sigma_1 87.4003388623678 2.81297225855344

• matches expected output for model 4 selection - notice how there is no white noise term

in the output. this is because the model preferred for this to be fixed

Note: While observations have shown that solar-like oscillations have an approximately Gaussian-like envelope, we
have no reason to believe that they should behave exactly like that. This is why you will see two different estimates for
numax (𝜈max) under the output parameters. In fact for this methodology first demonstrated in Huber+2009, the
smoothed numax value is what has been reported in the literature and should also be the adopted value here.

2.3 Running your favorite star

Initially all defaults were set and saved from the command line parser but we recently extended the software capabilities
– which means that it is more user-friendly and how you choose to use it is now completely up to you!

Alright first we need some info before running the pipeline.

>>> from pysyd import utils
>>> params = utils.Parameters()
>>> params
<PySYD Parameters>

The pysyd.utils.Parameters container class is an easy way to load in all software defaults which are analogous to
all flags/options available for the command-line parser.

Now let’s add a target i.e. the same one as above.

>>> name = '1435467'
>>> params.add_targets(stars=name)

Now that we have a target and our parameters, let’s create an instance of the pysyd.target.Target to process.

>>> from pysyd.target import Target
>>> star = Target(name, params)
>>> star
<Star 1435467>

Instantiation of a Target star automatically searches for and loads in available data (based on the given ‘name’). This
step will therefore flag anything that doesn’t seem right i.e., data is missing or paths are not correct.

2.3. Running your favorite star 17

pySYD Documentation, Release 6.10.5

First we will adjust a couple settings from above so that the two runs are identical. that it runs similarly to the first
example (sans the boolean flags).

>>> star.params['upper_ex'] = 5000.
>>> star.params['mc_iter'] = 200

Ok now that we have our desired settings and target, we can go ahead and process the star (which is fortunately a
one-liner in this case):

>>> star.process_star()

And that’s it. If you ran it on the same star, the output figures and parameters should exactly match.

18 Chapter 2. Crashteroseismology

CHAPTER

THREE

PYSYD LIBRARY

Thanks for stopping by the pySYD documentation and taking an interest in learning more about how it all works – we
are so thrilled to share asteroseismology with you!

3.1 Introduction

pySYD is an open-source asteroseismology package that adapts the same well-tested methodology from the well-known
and widely-used IDL-based SYD pipeline. In addition to not needing a license to perform rigorous asteroseismic anal-
yses, we have expanded the capabilities and features to include:

• automated background model comparison and selection

• parallel processing and other easy compatabilities for running many stars

• easily customizable with command-line friendly interface

• modular and adaptable across different applications

• saves reproducible samples for future analyses (i.e. seeds)

3.1.1 Reproducible Kepler mision results

In order to ensure the reproducibility of scientific results from the Kepler mission, we ran pySYD on ~100 Kepler legacy
stars (defined here) observed in short-cadence and compared the output to SYD results from [S2017a]. The same time
series and power spectra were used for both analyses, which are publicly available and hosted online c/o KASOC1.

The resulting values are compared for the two methods below for numax (𝜈max, left) and dnu (∆𝜈, right).
1 Kepler Asteroseismic Science Operations Center

19

https://kasoc.phys.au.dk

pySYD Documentation, Release 6.10.5

The residuals show no strong systematics to within <0.5% in Dnu and <~1% in numax, which is smaller than the typical
random uncertainties. This confirms that the open-source Python package pySYD provides consistent results with the
legacy IDL version that has been used extensively in the literature.

3.1.2 Related Tools

pySYD provides general purpose tools for performing asteroseismic analysis in the frequency domain. Several tools have
been developed to solve related scientific and data analysis problems. We have compiled a list of software packages
that perform similar or complementary analyses.

• AMP:
– language:

– reference:

– documentation: no

– publicly available: no

– requires license: n/a

• A2Z: determining global parameters of the oscillations of solar-like stars
– language: ?

– reference: yes

– documentation: no

– publicly available: no

– requires license: n/a

• Background: an extension of DIAMONDS that fits the background signal of solar-like oscillators
– language: c++11

20 Chapter 3. pySYD library

https://ui.adsabs.harvard.edu/abs/2010A%26A...511A..46M

pySYD Documentation, Release 6.10.5

– reference: no

– documentation: no

– publicly available: yes

– requires license: no

• CAN: on the detection of Lorentzian profiles in a power spectrum
– language: ?

– reference: yes

– documentation: no

– publicly available: no

– requires license: n/a

• COR: on detecting the large separation in the autocorrelation of stellar oscillation times series
– language: ?

– reference: yes

– documentation: no

– publicly available: no

– requires license: n/a

• DIAMONDS: high-DImensional And multi-MOdal NesteD Sampling
– language: c++11

– reference: yes

– documentation: yes

– publicly available: yes

– requires license: n/a

• DLB:
– language: ?

– reference: no

– documentation: n/a

– publicly available: no

– requires license: n/a

• FAMED: Fast & AutoMated pEakbagging with Diamonds
– language: IDL (currently being developed in Python)

– reference: yes

– documentation: yes

– publicly available: yes

– requires license: yes

• Flicker Flipper?:
– language:

3.1. Introduction 21

https://github.com/EnricoCorsaro/Background
https://ui.adsabs.harvard.edu/abs/2009A%26A...506.1043G
https://ui.adsabs.harvard.edu/abs/2009A%26A...508..877M
https://ui.adsabs.harvard.edu/abs/2014A%26A...571A..71C
https://diamonds.readthedocs.io/en/latest/
https://github.com/EnricoCorsaro/DIAMONDS
https://ui.adsabs.harvard.edu/abs/2020A%26A...640A.130C
https://famed.readthedocs.io/en/latest/
https://github.com/EnricoCorsaro/FAMED

pySYD Documentation, Release 6.10.5

– reference:

– documentation:

– publicly available:

– requires license: n/a

• KAB: automated asteroseismic analysis of solar-type stars
– language: ?

– reference: yes

– documentation: no

– publicly available: no

– requires license: n/a

• lightkurve: a friendly Python package for making discoveries with Kepler & TESS
– language: Python

– reference: no

– documentation: yes

– publicly available: yes

– requires license: no

• OCT: automated pipeline for extracting oscillation parameters of solar-like main-sequence stars
– language: ?

– reference: yes

– documentation: no

– publicly available: no

– requires license: n/a

• ORK: using the comb response function method to identify spacings
– language: ?

– reference: yes

– documentation: no

– publicly available: no

– requires license: n/a

• QML: a power-spectrum autocorrelation technique to detect global asteroseismic parameters
– language: ?

– reference: yes

– documentation: no

– publicly available: no

– requires license: n/a

• PBjam: a python package for automating asteroseismology of solar-like oscillators
– language: Python

22 Chapter 3. pySYD library

https://ui.adsabs.harvard.edu/abs/2010arXiv1003.4167K
https://docs.lightkurve.org
https://github.com/lightkurve/lightkurve
https://ui.adsabs.harvard.edu/abs/2010MNRAS.402.2049H
https://ui.adsabs.harvard.edu/abs/2008ApJ...676.1248B
https://ui.adsabs.harvard.edu/abs/2011arXiv1104.0631V

pySYD Documentation, Release 6.10.5

– reference: yes

– documentation: yes

– publicly available: yes

– requires license: no

• SYD: automated extraction of oscillation parameters for Kepler observations of solar-type stars
– language: IDL

– reference: yes

– documentation: no

– publicly available: no

– requires license: yes

Important: If your software is not listed or if something listed is incorrect/missing, please open a pull request to add
it, we aim to be inclusive of all Kepler-, K2- and TESS- related tools!

3.1.3 References

3.2 pySYD paths

Whether you choose to script or import pysyd as a module, it’s important that you always import

When running the software from a terminal or command prompt, the __init__ file saves two important locations, defined
as _ROOT and PACKAGEDIR, for software-related files.

The _ROOT directory has everything from input data and information to target results and therefore by default, is de-
fined in an easily accessible place (aka the current working directory.). From this, the software assumes there are 3
subdirectories:

• INFDIR : ‘~/path/to/local/pysyd/directory/info’

• INPDIR : ‘~/path/to/local/pysyd/directory/data’

• OUTDIR : ‘~/path/to/local/pysyd/directory/results’

The latter, PACKAGEDIR should never need to be touched unless for some reason the installation or setup was modified
by the user and intentionally left out package data (which is not recommended). For example, the pySYD matplotlib
stylesheet is saved there as well as relevant info dictionaries. Since this is used a lot by the software and does not
need to be modified by a user, this is typically installed in the user root directory within the pysyd directory (e.g.,
/usr/local/lib/python3.10/site-packages/pysyd/data/).

3.2. pySYD paths 23

https://ui.adsabs.harvard.edu/abs/2021AJ....161...62N
https://pbjam.readthedocs.io/en/latest/
https://github.com/grd349/PBjam
https://ui.adsabs.harvard.edu/abs/2009CoAst.160...74H

pySYD Documentation, Release 6.10.5

3.3 pySYD inputs

For what it’s worth and if you haven’t done so already, running the pySYD setup feature will conveniently provide all
of files which are discussed in detail on this page.

3.3.1 Required

The only thing that’s really required is the data.

For a given star ID, possible input data are its:
1. light curve ('ID_LC.txt') and/or

2. power spectrum ('ID_PS.txt').

Light curve: The Kepler, K2 & TESS missions have provided billions of stellar light curves, or a measure of the
object’s brightness (or flux) in time. Like most standard photometric data, we require that the time array is in units
of days. This is really important if the software is calculating the power spectrum for you! The y-axis is less
critical here – it can be anything from units of fraction flux or brightness as a function of time, along with any other
normalization(s). Units: time (days) vs. normalized flux (ppm)

Power spectrum: the frequency series or power spectrum is what’s most important for the asteroseismic analyses
applied and performed in this software. Thanks to open-source languages like Python, we have many powerful
community-driven libraries like astropy that can fortunately compute these things for us. Units: frequency (𝜇Hz) vs.
power density (ppm2𝜇Hz−1)

Cases

Therefore for a given star, there are four different scenarios that arise from a combination of these two inputs and we
describe how the software handles each of these cases.

Additionally, we will list these in the recommended order, where the top is the most preferred and the bottom is the
least.

Case 1: light curve and power spectrum

Here, everything can be inferred and/or calculated from the data when both are provided. This includes the time series
cadence, which is relevant for the nyquist frequency, or how high our sampling rate is. The total duration of the time
series sets an upper limit on the time scales we can measure and also sets the resolution of the power spectrum. Therefore
from this, we can determine if the power spectrum is oversampled or critically-sampled and make the appropriate arrays
for all input data.

The following are attributes saved to the pysyd.target.Target object in this scenario:

• Parameter(s):

– time series cadence (star.cadence)

– nyquist frequency (star.nyquist)

– total time series length or baseline (star.baseline)

– upper limit for granulation time scales (star.tau_upper)

– frequency resolution (star.resolution)

– oversampling factor (star.oversampling_factor)

24 Chapter 3. pySYD library

pySYD Documentation, Release 6.10.5

• Array(s):

– time series (star.time & star.flux)

– power spectrum (star.frequency & star.power)

– copy of input power spectrum (star.freq_os & star.pow_os)

– critically-sampled power spectrum (star.freq_cs & star.pow_cs)

Issue(s)

1. the only problem that can arise from this case is if the power spectrum is not normalized correctly or in the proper
units (i.e. frequency is in 𝜇Hz and power is in ppm2𝜇Hz−1). This is actually more common than you think so
if this might be the case, we recommend trying CASE 2 instead

Case 2: light curve only

Again we can determine the baseline and cadence, which set important features in the frequency domain as well. Since
the power spectrum is not yet calculated, we can control if it’s oversampled or critically-sampled. So basically for this
case, we can calculate all the same things as in Case 1 but we just have a few more steps that may take a little more
time to do.

The following are attributes saved to the pysyd.target.Target object in this scenario:

• Parameter(s):

– time series cadence (star.cadence)

– nyquist frequency (star.nyquist)

– total time series length or baseline (star.baseline)

– upper limit for granulation time scales (star.tau_upper)

– frequency resolution (star.resolution)

– oversampling factor (star.oversampling_factor)

• Array(s):

– time series (star.time & star.flux)

– newly-computed power spectrum (star.frequency & star.power)

– copy of oversampled power spectrum (star.freq_os & star.pow_os)

– critically-sampled power spectrum (star.freq_cs & star.pow_cs)

Issue(s)

1.

Case 3: power spectrum only

This case can be o-k, so long as additional information is provided.

Calculation(s)
• Parameter(s):

• Array(s):

Issue(s)

3.3. pySYD inputs 25

pySYD Documentation, Release 6.10.5

1.

Issue(s): 1) if oversampling factor not provided
2) if not normalized properly

Case 4: no data

well, we all know what happens when zero input is provided. . . but just in case, this will raise a PySYDInputError

CASE 1: light curve and power spectrum - Summary: - Calculation(s):

• time series cadence (∆𝑡)

• nyquist frequency (𝜈nyq)

• time series duration or baseline (∆𝑇)

• frequency resolution (∆𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

• oversampling factor (i.e. critically-sampled has an of=1)

• critically-sampled power spectrum

• Issue(s):
– the only problem that can arise from this case is if the power spectrum is not normalized correctly

or in the proper units (i.e. frequency is in 𝜇Hz and power is in ppm2𝜇Hz−1). This is actually more
common than you think so if this might be the case, we recommend trying CASE 2 instead.

CASE 2: light curve only - summary: Again we can determine the baseline and cadence, which set important features
in the

frequency domain as well. Since the power spectrum is not yet calculated, we can control if it’s oversampled
or critically-sampled

CASE 3: power spectrum only This case can be alright, as long as additional information is provided. Issue(s): 1) if
oversampling factor not provided

2) if not normalized properly

Important: For the saved power spectrum, the frequency array has units of 𝜇Hz and the power array is power density,
which has units of ppm2 𝜇Hz−1. We normalize the power spectrum according to Parseval’s Theorem, which loosely
means that the fourier transform is unitary. This last bit is incredibly important for two main reasons, but both that tie to
the noise properties in the power spectrum: 1) different instruments (e.g., Kepler, TESS) have different systematics and
hence, noise properties, and 2) the amplitude of the noise becomes smaller as your time series gets longer. Therefore
when we normalize the power spectrum, we can make direct comparisons between power spectra of not only different
stars, but from different instruments as well!

26 Chapter 3. pySYD library

pySYD Documentation, Release 6.10.5

3.3.2 Optional

There are two main information files that can be provided but both are optional – whether you choose to use them or
not is ultimately up to you!

Target list

For example, providing a star list via a basic text file is convenient for running a large sample of stars. We provided an
example with the rest of the setup, but essentially all it is is a list with one star ID per line. The star ID must match the
same ID associated with the data.

$ cat todo.txt
11618103
2309595
1435467

Note: If no stars are specified via command line or in a notebook, pySYD will read in this text file and process the list
of stars by default.

Star info

As suggested by the name of the file, this contains star information on an individual basis. Similar to the data, target IDs
must exactly match the given name in order to be successfully crossmatched – but this also means that the information
in this file need not be in any particular order.

Below is a snippet of what the csv would look like:

Table 1: Star info
stars rs logg teff numax lower_se upper_se lower_bg
1435467 100.0 5000.0 100.0
2309595 100.0 100.0

Just like the input data, the stars must match their ID but also, the commands must adhere to a special format. In
fact, the columns in this csv are exactly equal to the value (or destination) that the command-line parser saves each
option to. Since there are a ton of available columns, we won’t list them all here but there are a few ways you can view
the columns for yourself.

The first is by visiting our special command-line glossary, which explicitly states how each of the variables is de-
fined. You can also see them fairly easily by importing the pysyd.utils.get_dict module and doing a basic print
statement.

>>> from pysyd import utils
>>> columns = utils.get_dict('columns')
>>> print(columns['all])
['rs', 'rs_err', 'teff', 'teff_err', 'logg', 'logg_err', 'cli', 'inpdir',
'infdir', 'outdir', 'overwrite', 'show', 'ret', 'save', 'test', 'verbose',
'dnu', 'gap', 'info', 'ignore', 'kep_corr', 'lower_ff', 'lower_lc', 'lower_ps',
'mode', 'notching', 'oversampling_factor', 'seed', 'stars', 'todo', 'upper_ff',
'upper_lc', 'upper_ps', 'stitch', 'n_threads', 'ask', 'binning', 'bin_mode',
'estimate', 'adjust', 'lower_se', 'n_trials', 'smooth_width', 'step',
'upper_se', 'background', 'basis', 'box_filter', 'ind_width', 'n_laws',
'lower_bg', 'metric', 'models', 'n_rms', 'upper_bg', 'fix_wn', 'functions',

(continues on next page)

3.3. pySYD inputs 27

https://docs.python.org/3/library/functions.html#print

pySYD Documentation, Release 6.10.5

(continued from previous page)

'cmap', 'clip_value', 'fft', 'globe', 'interp_ech', 'lower_osc', 'mc_iter',
'nox', 'noy', 'npb', 'n_peaks', 'numax', 'osc_width', 'smooth_ech', 'sm_par',
'smooth_ps', 'threshold', 'upper_osc', 'hey', 'samples']
>>> len(columns['all'])
77

Note: This file is especially helpful for running many stars with different options - you can make your experience as
customized as you’d like!

3.4 Software modes

3.4.1 Running as a script

When running the software from a terminal or command prompt, the __init__ file saves two important locations, defined
as _ROOT and PACKAGEDIR, for software-related files.

The _ROOT directory has everything from input data and information to target results and therefore by default, is de-
fined in an easily accessible place (aka the current working directory.). From this, the software assumes there are 3
subdirectories:

• INFDIR : ‘~/path/to/local/pysyd/directory/info’

• INPDIR : ‘~/path/to/local/pysyd/directory/data’

• OUTDIR : ‘~/path/to/local/pysyd/directory/results’

The latter, PACKAGEDIR should never need to be touched unless for some reason the installation or setup was modified
by the user and intentionally left out package data (which is not recommended). For example, the pySYD matplotlib
stylesheet is saved there as well as relevant info dictionaries. Since this is used a lot by the software and does not
need to be modified by a user, this is typically installed in the user root directory within the pysyd directory (e.g.,
/usr/local/lib/python3.10/site-packages/pysyd/data/).

3.4.2 Importing as a module

3.4.3 Pipeline overview

The software generally operates in four main steps:
1. Loads in parameters and data

2. Gets initial values

3. Fits global parameters

4. Estimates uncertainties

Note: The software will process the pipeline on oversampled spectra for the first iterations but will always switch
to critically-sampled spectra for estimating uncertainties. Calculating uncertainties with oversampled spectra can
produce unreliable results and uncertainties!

A pySYD pipeline Target class object has two main function calls:

28 Chapter 3. pySYD library

pySYD Documentation, Release 6.10.5

1. The first module :
• Summary: a crude, quick way to identify the power excess due to solar-like oscillations

• This uses a heavy smoothing filter to divide out the background and then implements a frequency-
resolved, collapsed autocorrelation function (ACF) using 3 different box sizes

• The main purpose for this first module is to provide a good starting point for the second module. The
output from this routine provides a rough estimate for numax, which is translated into a frequency
range in the power spectrum that is believed to exhibit characteristics of p-mode oscillations

2. The second module :
• Summary: performs a more rigorous analysis to determine both the stellar background contribution

as well as the global asteroseismic parameters.

• Given the frequency range determined by the first module, this region is masked out to model the
white- and red-noise contributions present in the power spectrum. The fitting procedure will test a
series of models and select the best-fit stellar background model based on the BIC.

• The power spectrum is corrected by dividing out this contribution, which also saves as an output text
file.

• Now that the background has been removed, the global parameters can be more accurately estimated.
Numax is estimated by using a smoothing filter, where the peak of the heavily smoothed, background-
corrected power spectrum is the first and the second fits a Gaussian to this same power spectrum. The
smoothed numax has typically been adopted as the default numax value reported in the literature since
it makes no assumptions about the shape of the power excess.

• Using the masked power spectrum in the region centered around numax, an autocorrelation is com-
puted to determine the large frequency spacing.

Note: By default, both modules will run and this is the recommended procedure if no other information is provided.

If stellar parameters like the radius, effective temperature and/or surface gravity are provided in the info/star_info.csv
file, pySYD can estimate a value for numax using a scaling relation. Therefore the first module can be bypassed, and
the second module will use the estimated numax as an initial starting point.

There is also an option to directly provide numax in the info/star_info.csv (or via command line, see advanced usage
for more details), which will override the value found in the first module. This option is recommended if you think that
the value found in the first module is inaccurate, or if you have a visual estimate of numax from the power spectrum.

3.4.4 Introduction

This was initially created to be used with the command-line tool but has been expanded to include functions compatible
with Python notebooks as well. This is still a work in progress!

3.4. Software modes 29

pySYD Documentation, Release 6.10.5

3.4.5 Imports

3.4.6 Pipeline modes

There are currently four operational pySYD modes (and two under development):

1. setup : Initializes pysyd.pipeline.setup for quick and easy setup of directories, files and examples. This
mode only inherits higher level functionality and has limited CLI (see parent parser below). Using this feature
will set up the paths and files consistent with what is recommended and discussed in more detail below.

2. load : Loads in data for a single target through pysyd.pipeline.load. Because this does handle data, this
has full access to both the parent and main parser.

3. run : The main pySYD pipeline function is initialized through pysyd.pipeline.run and runs the two core
modules (i.e. find_excess and fit_background) for each star consecutively. This mode operates using most
CLI options, inheriting both the parent and main parser options.

4. parallel : Operates the same way as the previous mode, but processes stars simultaneously in parallel. Based
on the number of threads available, stars are separated into groups (where the number of groups is exactly equal to
the number of threads). This mode uses all CLI options, including the number of threads to use for parallelization
(see here).

5. display : will primarily be used for development and testing purposes as well, but

6. test : Currently under development but intended for developers.

3.4.7 Examples

3.4.8 pysyd.pipeline API

pysyd.pipeline.check(args)
Check target

This is intended to be a way to check a target before running it by plotting the times series data and/or power
spectrum. This works in the most basic way but has not been tested otherwise

Parameters
args [argparse.Namespace] the command line arguments

Important: has not been extensively tested - also it is exactly the same as “load” so think through if this is
actually needed and decided which is easier to understand

pysyd.pipeline.fun(args)
Get logo output

Parameters
args [argparse.Namespace] the command line arguments

pysyd.pipeline.load(args)
Load target

Load in a given target to check data or figures

30 Chapter 3. pySYD library

pySYD Documentation, Release 6.10.5

Note: this does not load in a target or target data, this is purely information that is required to run any pySYD
mode successfully (with the exception of pysyd.pipeline.setup)

Parameters
args [argparse.Namespace] the command line arguments

pysyd.pipeline.parallel(args)
Parallel execution

Run pySYD concurrently for a large number of stars

Parameters
args [argparse.Namespace] the command line arguments

Methods pipe

See also:
pysyd.pipeline.run

pysyd.pipeline.plot(args)
Make plots

Module to load in all relevant information and dictionaries required to run the pipeline

Note: this does not load in a target or target data, this is purely information that is required to run any pySYD
mode successfully (with the exception of pysyd.pipeline.setup)

Parameters
args [argparse.Namespace] the command line arguments

pysyd.pipeline.run(args)
Run pySYD

Main function to initiate the pySYD pipeline for one or many stars (the latter is run consecutively not concur-
rently)

Parameters
args [argparse.Namespace] the command line arguments

Methods pysyd.utils.Parameters pysyd.pipeline.pipe pysyd.utils._scrape_output
See also:
pysyd.pipeline.parallel

pysyd.pipeline.setup(args)
Quick software setup

Running this after installation will create the appropriate directories in the current working directory as well as
download example data and files to test your pySYD installation

Parameters
args [argparse.Namespace] the command line arguments

3.4. Software modes 31

pySYD Documentation, Release 6.10.5

note [str, optional] suppressed (optional) verbose output

raw [str] path to download “raw” package data and examples from the pySYD source directory

3.5 Target class

The heart & soul of the pySYD package

3.5.1 Introduction

At some point, every given star will be processed as a pysyd.target.Target object. This is where a bulk of the
scientific data analysis is done.

3.5.2 Imports

3.5.3 Usage

3.5.4 pysyd.target API

class pysyd.target.Target(name, args)
Main pipeline target object

Deprecated since version 1.6.0: Target.okwill be removed in pySYD 6.0.0, it is replaced by new error handling,
that will instead raise exceptions or warnings

A new instance (or star) is created for each target that is processed. Instantiation copies the relevant, individual
star dictionary (and the inherited constants) and will then load in data using the provided star name

Parameters
name [str] which target to load in and/or process

args [pysyd.utils.Parameters] container class of pysyd parameters

Attributes
params [Dict] copy of args.params[name] dictionary with pysyd parameters and options

check_numax(columns=['numax', 'dnu', 'snr'])
Check
𝑟𝑚
𝑛𝑢𝑚𝑎𝑥

Checks if there is an initial starting point or estimate for numax

Parameters
columns [List[str]] saved columns if the estimate_numax() function was run

Raises
utils.InputError if an invalid value was provided as input for numax

utils.ProcessingError if it still cannot find any estimate for numax

32 Chapter 3. pySYD library

pySYD Documentation, Release 6.10.5

collapse_ed(n_trials=3)
Get ridges

Optimizes the large frequency separation by determining which spacing creates the “best” ridges (but is
currently under development) think similar to a step-echelle but quicker and more hands off?

Attributes
x [numpy.ndarray] x-axis for the collapsed ED ~[0, 2 × ∆𝜈]

y [numpy.ndarray] marginalized power along the y-axis (i.e. collapsed on to the x-axis)

Important: need to optimize this - currently does nothing really

collapsed_acf(n_trials=3, step=0.25, max_snr=100.0)
Collapsed ACF

Computes a collapsed autocorrelation function (ACF) using n different box sizes in n different trials (i.e.
n_trials)

Parameters
n_trials [int] the number of trials to run

step [float] fractional step size to use for the collapsed ACF calculation

max_snr [float] the maximum signal-to-noise of the estimate (this is primarily for plot formatting)

compute_acf(fft=True, smooth_ps=2.5)
ACF

Compute the autocorrelation function (ACF) of the background-divided power spectrum (i.e. bg_corr),
with an option to smooth the BCPS first

Parameters
fft [bool, default=True] if True, uses FFTs to compute the ACF, otherwise it will use numpy.

correlate

smooth_ps [float, optional] convolve the background-corrected PS with a box filter of this width
(𝜇Hz)

Attributes
bgcorr_smooth [numpy.ndarray] smoothed background-corrected power spectrum if smooth_ps !

= 0 else copy of bg_corr

lag, auto [numpy.ndarray, numpy.ndarray] the autocorrelation of the “zoomed-in” power spectrum

compute_spectrum(oversampling_factor=1, store=False)
Compute power spectrum

NEW function to calculate a power spectrum given time series data, which will normalize the power spec-
trum to spectral density according to Parseval’s theorem

Parameters
oversampling_factor [int, default=1] the oversampling factor to use when computing the power spec-

trum

store [bool, default=False] if True, it will store the original data arrays for plotting purposes later

Yields

3.5. Target class 33

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

pySYD Documentation, Release 6.10.5

frequency, power [numpy.ndarray, numpy.ndarray] power spectrum computed from the input time
series data (i.e. time & flux) using the astropy.timeseries.LombScargle module

Returns
frequency, power [numpy.ndarray, numpy.ndarray] the newly-computed and normalized power spec-

trum (in units of 𝜇Hz vs. ppm2𝜇Hz−1)

Important: If you are unsure if your power spectrum is in the proper units, we recommend using this new
module to compute and normalize for you. This will ensure the accuracy of the results.

correct_background(metric='bic')
Correct background

Corrects for the stellar background contribution in the power spectrum by both dividing and subtracting
this out, which also saves copies of each (i.e. bg_div background-divided power spectrum to ID_BDPS.txt
and bg_sub background-subtracted power spectrum to :ref:`ID_BSPS.txt). After this is done, a copy of
the BDPS is saved to bg_corr and used for dnu calculations and the echelle diagram.

Parameters
metric [str, default=’bic’] which metric to use (i.e. bic or aic) for model selection

Attributes
frequency, bg_div [numpy.ndarray, numpy.ndarray] background-divded power spectrum (BDPS ->

higher S/N for echelle diagram)

frequency, bg_sub [numpy.ndarray, numpy.ndarray] background-subtracted power spectrum (BSPS
-> preserves mode amplitudes)

frequency, bg_corr [numpy.ndarray, numpy.ndarray] background-corrected power spectrum, which
is a copy of the BDPS

derive_parameters(mc_iter=1)
Derive parameters

Main function to derive the background and global asteroseismic parameters (including uncertainties when
relevant), which does everything from finding the initial estimates to plotting/saving results

Parameters
mc_iter [int, default=1] the number of iterations to run

Methods
pysyd.target.Target.check_numax first checks to see if there is a valid estimate or input value

provides for numax

pysyd.target.Target.initial_parameters if so, it will estimate the rest of the initial guesses
required for the background and global fitting (primarily using solar scaling relations)

pysyd.target.Target.first_step the first iteration determines the best-fit background model
and global properties

pysyd.target.Target.get_samples bootstrap uncertainties by attempting to recover the param-
eters from the first step

echelle_diagram(smooth_ech=None, nox=None, noy='0+0', hey=False, npb=10, nshift=0,
clip_value=3.0)

Echelle diagram

34 Chapter 3. pySYD library

https://docs.python.org/3/library/time.html#module-time

pySYD Documentation, Release 6.10.5

Calculates everything required to plot an echelle diagram Note: this does not currently have the
get_ridges method attached (i.e. not optimizing the spacing or stepechelle)

Parameters
smooth_ech [float, default=None] value to smooth (i.e. convolve) ED by

nox [int, default=0] number of grid points in x-axis of echelle diagram

noy [str, default=’0+0’] number of orders (y-axis) to plot in echelle diagram

npb [int, default=10] option to provide the number of points per bin as opposed to an arbitrary value
(calculated from spacing and frequency resolution)

nshift [int, default=0] number of orders to shift echelle diagram (i.e. + is up, - is down)

hey [bool, default=False] plugin for Dan Hey’s echelle package (not currently implemented)
clip_value [float, default=3.0] to clip any peaks higher than Nx the median value

Attributes
ed [numpy.meshgrid] smoothed + summed 2d power for echelle diagram

extent [List[float]] bounding box for echelle diagram

estimate_background(ind_width=20.0)
Background estimates

Estimates initial guesses for the stellar background contributions for both the red and white noise compo-
nents

Parameters
ind_width [float] the independent average smoothing width (𝜇Hz)

Attributes
bin_freq, bin_pow, bin_err [numpy.ndarray, numpy.ndarray, numpy.ndarray] binned power spec-

trum using the ind_width bin size

Methods

estimate_numax(binning=0.005, bin_mode='mean', smooth_width=20.0, ask=False)
Estimate numax

Automated routine to identify power excess due to solar-like oscillations and estimate an initial starting
point for numax (𝜈max)

Parameters
binning [float] logarithmic binning width (i.e. evenly spaced in log space)

bin_mode [{‘mean’, ‘median’, ‘gaussian’}] mode to use when binning

smooth_width: float box filter width (in 𝜇Hz) to smooth power spectrum

ask [bool] If True, it will ask which trial to use as the estimate for numax

Attributes
bin_freq, bin_pow [numpy.ndarray, numpy.ndarray] copy of the power spectrum (i.e. freq & pow)

binned equally in logarithmic space

smooth_freq, smooth_pow [numpy.ndarray, numpy.ndarray] copy of the binned power spectrum (i.e.
bin_freq & bin_pow) binned equally in linear space – yes, this is doubly binned intentionally

3.5. Target class 35

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#pow

pySYD Documentation, Release 6.10.5

freq, interp_pow [numpy.ndarray, numpy.ndarray] the smoothed power spectrum (i.e. smooth_freq
& smooth_pow) interpolated back to the original frequency array (also referred to as “crude back-
ground model”)

freq, bgcorr_pow [numpy.ndarray, numpy.ndarray] approximate background-corrected power spec-
trum computed by dividing the original PS (pow) by the interpolated PS (interp_pow)

Methods
• pysyd.target.Target.collapsed_acf

estimate_parameters(estimate=True)
Estimate parameters

Calls all methods related to the first module

Parameters
estimate [bool, default=True] if numax is already known, this will automatically be skipped since it

is not needed

Methods
• pysyd.target.Target.initial_estimates

• pysyd.target.Target.estimate_numax

• pysyd.utils._save_estimates

first_step(background=True, globe=True)
First step

Processes a given target for the first step, which has extra steps for each of the two main parts of this method
(i.e. background model and global fit):

1. background model: the automated best-fit model selection is only performed in the first step, the
results which are saved for future purposes (including the background-corrected power spectrum)

2. global fit: while the ACF is computed for every iteration, a mask is created in the first step to prevent
the estimate for dnu to latch on to a different (i.e. incorrect) peak, since this is a multi-modal parameter
space

Parameters
background [bool] run the automated background-fitting routine

globe [bool] perform global asteroseismic analysis (really only relevant if interested in the background
model only)

Methods
pysyd.target.Target.estimate_background estimates the amplitudes/levels of both corre-

lated and frequency-independent noise properties from the input power spectrum

pysyd.target.Target.model_background automated best-fit background model selection that
is a summed contribution of various white + red noise componenets

pysyd.target.Target.global_fit after correcting for the best-fit background model, this de-
rives the global asteroseismic parameters

See also:
pysyd.target.Target.single_step

36 Chapter 3. pySYD library

https://docs.python.org/3/library/functions.html#pow

pySYD Documentation, Release 6.10.5

fix_data(frequency, power, save=True, kep_corr=False, ech_mask=None, lower_ech=None,
upper_ech=None)

Fix frequency domain data

Applies frequency-domain tools to power spectra to “fix” (i.e. manipulate) the data. If no available options
are used, it will simply return copies of the original arrays

Parameters
save [bool] save all data products

kep_corr [bool] correct for known Kepler short-cadence artefacts

ech_mask [List[lower_ech,upper_ech]] corrects for mixed modes if not None

lower_ech [float] folded lower frequency limit (~[0,dnu])

upper_ech [float] folded upper frequency limit (~[0,dnu])

frequency, power [numpy.ndarray, numpy.ndarray] input power spectrum to be corrected

Methods
• pysyd.target.Target.remove_artefact mitigate known Kepler artefacts

• pysyd.target.Target.whiten_mixed mitigate mixed modes

Returns
frequency, power [numpy.ndarray, numpy.ndarray] copy of the corrected power spectrum

frequency_spacing(n_peaks=10)
Estimate ∆𝜈

Estimates the large frequency separation (or ∆𝜈) by fitting a Gaussian to the peak of the ACF “cutout”
using scipy.curve_fit.

Parameters
n_peaks [int, default=10] the number of peaks to identify in the ACF

Attributes
peaks_l, peaks_a [numpy.ndarray] the n highest peaks (n_peaks) in the ACF

zoom_lag, zoom_auto [numpy.ndarray] cutout from the ACF of the peak near dnu

Returns
converge [bool] returns False if a Gaussian could not be fit within the 1000 iterations

Raises
utils.ProcessingError if a Gaussian could not be fit to the provided peak

See also:
pysyd.target.Target.acf_cutout, pysyd.target.Target.optimize_ridges, pysyd.target.
Target.echelle_diagram

Note: For the first step, a Gaussian weighting (centered on the expected value for dnu, or exp_dnu) is
automatically computed and applied by the pipeline to prevent the fit from latching on to a peak that is a
harmonic and not the actual spacing

3.5. Target class 37

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False

pySYD Documentation, Release 6.10.5

get_background()

Get background

Attempts to recover background model parameters in later iterations by using the scipy.curve_fit mod-
ule using the same best-fit background model settings

Returns
converge [bool] returns False if background model fails to converge

get_epsilon(n_trials=3)
Get ridges

Optimizes the large frequency separation by determining which spacing creates the “best” ridges (but is
currently under development) think similar to a step-echelle but quicker and more hands off?

Attributes
x [numpy.ndarray] x-axis for the collapsed ED ~[0, 2 × ∆𝜈]

y [numpy.ndarray] marginalized power along the y-axis (i.e. collapsed on to the x-axis)

Important: need to optimize this - currently does nothing really

get_samples()

Get samples

Estimates uncertainties for parameters by randomizing the power spectrum and attempting to recover the
same parameters by calling the pysyd.target.Target.single_step

Attributes
frequency, power [numpy.ndarray, numpy.ndarray] copy of the critically-sampled power spectrum

(i.e. freq_cs & pow_cs) after applying the mask~[lower_bg,upper_bg]

pbar [tqdm.tqdm, optional] optional progress bar used with verbose output when running multiple
iterations

Note: all iterations except for the first step are applied to the critically-sampled power spectrum and not
the oversampled power spectrum

Important: if the verbose option is enabled, the tqdm package is required

global_fit()

Global fit

Fits global asteroseismic parameters 𝜈max and ∆𝜈, where the former is estimated two different ways.

Methods pysyd.target.Target.numax_smooth pysyd.target.Target.numax_gaussian
pysyd.target.Target.compute_acf pysyd.target.Target.frequency_spacing

initial_estimates(lower_ex=1.0, upper_ex=8000.0, max_trials=6)
Initial estimates

Prepares data and parameters associated with the first module that identifies solar-like oscillations and
estimates numax

Parameters

38 Chapter 3. pySYD library

https://docs.python.org/3/library/constants.html#False

pySYD Documentation, Release 6.10.5

lower_ex [float] the lower frequency limit of the PS used to estimate numax

upper_ex [float] the upper frequency limit of the PS used to estimate numax

max_trials [int] (arbitrary) maximum number of “guesses” or trials to perform to estimate numax

Attributes
frequency, power [numpy.ndarray, numpy.ndarray] copy of the entire oversampled (or critically-

sampled) power spectrum (i.e. freq_os & pow_os)

freq, pow [numpy.ndarray, numpy.ndarray] copy of the entire oversampled (or critically-sampled)
power spectrum (i.e. freq_os & pow_os) after applying the mask~[lower_ex,upper_ex]

module [str, default=’parameters’] which part of the pipeline is currently being used

initial_parameters(module='parameters', lower_bg=1.0, upper_bg=8000.0)
Initial guesses

Estimates initial guesses for background components (i.e. timescales and amplitudes) using solar scaling
relations. This resets the power spectrum and has its own independent filter or bounds (via [lower_bg,
upper_bg]) to use for this subroutine

Parameters
lower_bg [float] lower frequency limit of PS to use for the background fit

upper_bg [float] upper frequency limit of PS to use for the background fit

Attributes
frequency, power [numpy.ndarray, numpy.ndarray] copy of the entire oversampled (or critically-

sampled) power spectrum (i.e. freq_os & pow_os)

frequency, random_pow [numpy.ndarray, numpy.ndarray] copy of the entire oversampled
(or critically-sampled) power spectrum (i.e. freq_os & pow_os) after applying the
mask~[lower_bg,upper_bg]

module [str] which part of the pipeline is currently being used

i [int] iteration number, starts at 0

Methods
pysyd.target.Target.solar_scaling uses multiple solar scaling relations to determnie accu-

rate initial guesses for many of the derived parameters

Warning: This is typically sufficient for most stars but may affect evolved stars and need to be adjusted!

load_file(path)
Load text file

Load a light curve or a power spectrum from a basic 2xN txt file and stores the data into the x (independent
variable) and y (dependent variable) arrays, where N is the length of the series

Parameters
path [str] the file path of the data file

Returns
x, y [numpy.ndarray, numpy.ndarray] the independent and dependent variables, respectively

3.5. Target class 39

pySYD Documentation, Release 6.10.5

load_power_spectrum(long=1000000)
Load power spectrum

Loads in available power spectrum and computes relevant information – also checks for time series data
and will raise a warning if there is none since it will have to assume a critically-sampled power spectrum

Attributes
note [str, optional] verbose output

ps [bool] True if star ID has an available (or newly-computed) power spectrum

Yields
frequency, power [numpy.ndarray, numpy.ndarray] input power spectrum

freq_os, pow_os [numpy.ndarray, numpy.ndarray] copy of the oversampled power spectrum (i.e.
frequency & power)

freq_cs, pow_cs [numpy.ndarray, numpy.ndarray] copy of the critically-sampled power spectrum (i.e.
frequency & power) iff the oversampling_factor is provided, otherwise these arrays are just
copies of freq_os & pow_os since this factor isn’t known and needs to be assumed

Raises
pysyd.utils.InputWarning if no information or time series data is provided (i.e. has to assume

the PS is critically-sampled)

load_time_series(save=True, stitch=False, oversampling_factor=None)
Load light curve

Loads in time series data and calculates relevant parameters like the cadence and nyquist frequency

Parameters
save [bool] save all data products

stitch [bool] “stitches” together time series data with large “gaps”

oversampling_factor [int, optional] oversampling factor of input power spectrum

Attributes
note [str, optional] verbose output

lc [bool] True if star ID has light curve data available

cadence [int] median cadence of time series data (
𝐷𝑒𝑙𝑡𝑎𝑡)

nyquist [float] nyquist frequency of the power spectrum (calculated from time series cadence)

baseline [float] total time series duration (
𝐷𝑒𝑙𝑡𝑎𝑇)

tau_upper [float] upper limit of the granulation time scales, which is set by the total duration of the
time series (divided in half)

Yields
time, flux [numpy.ndarray, numpy.ndarray] input time series data

frequency, power [numpy.ndarray, numpy.ndarray] newly-computed frequency array using the time
series array (i.e. time & flux)

freq_os, pow_os [numpy.ndarray, numpy.ndarray] copy of the oversampled power spectrum (i.e.
frequency & power)

40 Chapter 3. pySYD library

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/time.html#module-time

pySYD Documentation, Release 6.10.5

freq_cs, pow_cs [numpy.ndarray, numpy.ndarray] copy of the critically-sampled power spectrum (i.e.
frequency & power)

Raises
pysyd.utils.InputWarning if the oversampling factor provided is different from that computed

from the time series data and power spectrum

pysyd.utils.InputError if the oversampling factor calculated from the time series data and power
spectrum is not an integer

model_background(n_laws=None, fix_wn=False, basis='tau_sigma')
Model stellar background

If nothing is fixed, this method iterates through 2(̇𝑛laws + 1) models to determine the best-fit background
model due to stellar granulation processes, which uses a solar scaling relation to estimate the number of
Harvey-like component(s) (or n_laws)

Parameters
n_laws [int] specify number of Harvey-like components to use in background fit

fix_wn [bool] option to fix the white noise instead of it being an additional free parameter

basis [str] which basis to use for background fitting, e.g. {a,b} parametrization TODO: not yet op-
erational

Methods
• pysyd.models.background

• scipy.curve_fit

• pysyd.models._compute_aic

• pysyd.models._compute_bic

• pysyd.target.Target.correct_background

Returns
converge [bool] returns False if background model fails to converge

Raises
utils.ProcessingError if this failed to converge on a single model during the first iteration

numax_gaussian()

Gaussian 𝜈max

Estimate numax by fitting a Gaussian to the “zoomed-in” power spectrum (i.e. region_freq and
region_pow) using scipy.curve_fit

Returns
converge [bool] returns False if background model fails to converge

Raises
utils.ProcessingError if the Gaussian fit does not converge for the first step

numax_smooth(sm_par=None)
Smooth 𝜈max

Estimate numax by taking the peak of the smoothed power spectrum

Parameters

3.5. Target class 41

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False

pySYD Documentation, Release 6.10.5

sm_par [float, optional] smoothing width for power spectrum calculated from solar scaling relation
(typically ~1-4)

Attributes
frequency, pssm [numpy.ndarray, numpy.ndarray] smoothed power spectrum

frequency, pssm_bgcorr [numpy.ndarray, numpy.ndarray] smoothed background-subtracted power
spectrum

region_freq, region_pow [numpy.ndarray, numpy.ndarray] oscillation region of the power spectrum
(“zoomed in”) by applying the mask~[lower_ps,upper_ps]

numax_smoo [float] the ‘observed’ numax (i.e. the peak of the smoothed power spectrum)

dnu_smoo [float] the ‘expected’ dnu based on a scaling relation using the numax_smoo

optimize_ridges(n=50, res=0.01)
Get ridges

Optimizes the large frequency separation by determining which spacing creates the “best” ridges (but is
currently under development) think similar to a step-echelle but quicker and more hands off?

Attributes
x [numpy.ndarray] x-axis for the collapsed ED ~[0, 2 × ∆𝜈]

y [numpy.ndarray] marginalized power along the y-axis (i.e. collapsed on to the x-axis)

Important: need to optimize this - currently does nothing really

process_star()

Run pipeline

Processes a given star with pySYD

Methods
• pysyd.target.Target.estimate_parameters

• pysyd.target.Target.derive_parameters

• pysyd.target.Target.show_results

red_noise(box_filter=1.0, n_rms=20)
Estimate red noise

Estimates amplitudes of red noise components by using a smoothed version of the power spectrum with
the power excess region masked out – which will take the mean of a specified number of points (via -nrms,
default=20) for each Harvey-like component

Parameters
box_filter [float] the size of the 1D box smoothing filter

n_rms [int] number of data points to average over to estimate red noise amplitudes

Attributes
smooth_pow [numpy.ndarray] smoothed power spectrum after applying the box filter

42 Chapter 3. pySYD library

pySYD Documentation, Release 6.10.5

remove_artefact(freq, pow, lcp=566.4233312035817, lf_lower=[240.0, 500.0], lf_upper=[380.0, 530.0],
hf_lower=[4530.0, 5011.0, 5097.0, 5575.0, 7020.0, 7440.0, 7864.0], hf_upper=[4534.0,
5020.0, 5099.0, 5585.0, 7030.0, 7450.0, 7867.0])

Remove Kepler artefacts

Module to remove artefacts found in Kepler data by replacing known frequency ranges with simulated noise

Parameters
lcp [float] long cadence period (in Msec)

lf_lower [List[float]] lower limits of low-frequency artefacts

lf_upper [List[float]] upper limits of low-frequency artefacts

hf_lower [List[float]] lower limit of high frequency artefact

hf_upper [List[float]] upper limit of high frequency artefact

freq, pow [numpy.ndarray, numpy.ndarray] input data that needs to be corrected

Returns
frequency, power [numpy.ndarray, numpy.ndarray] copy of the corrected power spectrum

Note:
Known Kepler artefacts include:

1. long-cadence harmonics

2. sharp, high-frequency artefacts (> 5000𝜇Hz)

3. low frequency artefacts 250-400 muHz (mostly present in Q0 and Q3 data)

show_results(show=False, verbose=False)
Show results

Parameters
show [bool, optional] show output figures and text

verbose [bool, optional] turn on verbose output

single_step()

Single step

Similar to the first step, this function calls the same methods but uses the selected best-fit background model
from the first step to estimate the parameters

Attributes
converge [bool] removes any saved parameters if any fits did not converge (i.e. False)

Returns
converge [bool] returns True if all relevant fits converged

Methods
• pysyd.target.Target.estimate_background estimates the amplitudes/levels of both cor-

related and frequency-independent noise properties from the input power spectrum

3.5. Target class 43

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True

pySYD Documentation, Release 6.10.5

• pysyd.target.Target.get_background unlike the first step, which iterated through several
models and performed a best-fit model comparison, this only fits parameters from the selected
model in the first step

• pysyd.target.Target.global_fit after correcting for the background model, this derives
the global asteroseismic parameters

solar_scaling(numax=None, scaling='tau_sun_single', max_laws=3, ex_width=1.0, lower_ps=None,
upper_ps=None)

Initial values

Using the initial starting value for
𝑟𝑚
𝑛𝑢𝑚𝑎𝑥, estimates the rest of the parameters needed for both the background and global fits. Uses scaling
relations from the Sun to:

1. estimate the width of the region of oscillations using numax

2. guess starting values for granulation time scales

Parameters
numax [float, default=None]

provide initial value for numax to bypass the first module
scaling [str, default=’tau_sun_single’] which solar scaling relation to use

max_laws [int, default=3] the maximum number of resolvable Harvey-like components

ex_width [float, default=1.0] fractional width to use for power excess centered on numax

lower_ps [float, default=None] lower bound of power excess to use for ACF [in
𝑟𝑚𝜇𝐻𝑧]

upper_ps [float, default=None] upper bound of power excess to use for ACF [in
𝑟𝑚𝜇𝐻𝑧]

Attributes
converge [bool, default=True] True if all fitting converges

stitch_data(gap=20)
Stitch light curve

For computation purposes and for special cases that this does not affect the integrity of the results, this mod-
ule ‘stitches’ a light curve together for time series data with large gaps. For stochastic p-mode oscillations,
this is justified if the lifetimes of the modes are smaller than the gap.

Parameters
gap [int] how many consecutive missing cadences are considered a ‘gap’

Attributes
time [numpy.ndarray] original time series array to correct

new_time [numpy.ndarray] the corrected time series array

Raises
pysyd.utils.InputWarning when using this method since it’s technically not a great thing to do

44 Chapter 3. pySYD library

https://docs.python.org/3/library/constants.html#True

pySYD Documentation, Release 6.10.5

Warning: USE THIS WITH CAUTION. This is technically not a great thing to do for primarily two
reasons:

1. you lose phase information and

2. can be problematic if mode lifetimes are shorter than gaps (i.e. more evolved stars)

Note: temporary solution for handling very long gaps in TESS data – still need to figure out a better way
to handle this

white_noise()

Estimate white noise

Estimate the white noise level by taking the mean of the last 10% of the power spectrum

whiten_mixed(freq, pow, dnu=None, lower_ech=None, upper_ech=None, notching=False)
Whiten mixed modes

Module to help reduce the effects of mixed modes random white noise in place of ℓ = 1 for subgiants with
mixed modes to better constrain the large frequency separation

Parameters
dnu [float, default=None] the so-called large frequency separation to fold the PS to

lower_ech [float, default=None] lower frequency limit of mask to “whiten”

upper_ech [float, default=None] upper frequency limit of mask to “whiten”

notching [bool, default=False] if True, uses notching instead of generating white noise

freq, pow [numpy.ndarray, numpy.ndarray] input data that needs to be corrected

folded_freq [numpy.ndarray] frequency array modulo dnu (i.e. folded to the large separation, ∆𝜈)

Returns
frequency, power [numpy.ndarray, numpy.ndarray] copy of the corrected power spectrum

3.6 Models & utilities

Container classes, parameter dictionaries, functions related to file loading and/or saving as well as various data manip-
ulation methods (i.e. correcting artefacts, binning data, etc.).

3.6.1 Introduction

3.6.2 Imports

Any dependencies

3.6. Models & utilities 45

https://docs.python.org/3/library/constants.html#True

pySYD Documentation, Release 6.10.5

3.6.3 Usage

Used during. . .

3.6.4 Examples

3.6.5 Models

pysyd.models.background(frequency, guesses, mode='regular', ab=False, noise=None)
The main model for the stellar background fitting

Parameters
frequency [numpy.ndarray] the frequency of the power spectrum

guesses [list] the parameters of the Harvey model

mode [{‘regular’, ‘second’, ‘fourth’}] the mode of which Harvey model parametrization to use. Default
mode is regular. The ‘regular’ mode is when both the second and fourth order terms are added in
the denominator whereas, ‘second’ only adds the second order term and ‘fourth’ only adds the fourth
order term.

total [bool] If True, returns the summed model over multiple components. This is deprecated.

ab [bool, optional] If True, changes to the traditional a, b parametrization as opposed to the SYD

noise [None, optional] If not None, it will fix the white noise to this value and not model it, reducing the
dimension of the problem/model

Returns
model [np.ndarray] the stellar background model

TODO option to fix the white noise (i.e. noise option) option to change the parametrization (i.e. ab option)
option to add power law

pysyd.models.gaussian(frequency, offset, amplitude, center, width)
Gaussian model

Observed solar-like oscillations have a Gaussian-like profile and therefore, detections are modeled as a Gaussian
distribution.

Parameters
frequency [numpy.ndarray] the frequency array

offset [float] the vertical offset

amplitude [float] amplitude of the Gaussian

center [float] center of the Gaussian

width [float] the width of the Gaussian

Returns
result [np.ndarray] the Gaussian distribution

pysyd.models.harvey_fit(frequency, tau, sigma, exponent, mode='regular', ab=False)
Testing

46 Chapter 3. pySYD library

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None

pySYD Documentation, Release 6.10.5

pysyd.models.harvey_fourth(frequency, tau, sigma, mode='regular', ab=False)
Testing

pysyd.models.harvey_none(frequency, white_noise, ab=False)
No Harvey model

Stellar background model that does not contain any Harvey-like components i.e. this is the simplest model of all
- consisting of a single white-noise component. This was added with the hopes that it would be preferred in the
model selection for non-detections.

Warning: check if this is working for null detections

Parameters
frequency [numpy.ndarray] the frequency array

white_noise [float] the white noise component

Returns
model [numpy.ndarray] the no-Harvey (white noise) model

pysyd.models.harvey_one(frequency, tau_1, sigma_1, white_noise, ab=False)
One Harvey model

Stellar background model consisting of a single Harvey-like component

Parameters
frequency [numpy.ndarray] the frequency array

tau_1 [float] timescale of the first harvey component

sigma_1 [float] amplitude of the first harvey component

white_noise [float] the white noise component

Returns
model [numpy.ndarray] the one-Harvey model

pysyd.models.harvey_regular(frequency, tau, sigma, mode='regular', ab=False)
Testing

pysyd.models.harvey_second(frequency, tau, sigma, mode='regular', ab=False)
Testing

pysyd.models.harvey_three(frequency, tau_1, sigma_1, tau_2, sigma_2, tau_3, sigma_3, white_noise,
ab=False)

Three Harvey model

Stellar background model consisting of three Harvey-like components

Parameters
frequency [numpy.ndarray] the frequency array

tau_1 [float] timescale of the first harvey component

sigma_1 [float] amplitude of the first harvey component

tau_2 [float] timescale of the second harvey component

3.6. Models & utilities 47

pySYD Documentation, Release 6.10.5

sigma_2 [float] amplitude of the second harvey component

tau_3 [float] timescale of the third harvey component

sigma_3 [float] amplitude of the third harvey component

white_noise [float] the white noise component

Returns
model [numpy.ndarray] the three-Harvey model

pysyd.models.harvey_two(frequency, tau_1, sigma_1, tau_2, sigma_2, white_noise, ab=False)
Two Harvey model

Stellar background model consisting of two Harvey-like components

Parameters
frequency [numpy.ndarray] the frequency array

tau_1 [float] timescale of the first harvey component

sigma_1 [float] amplitude of the first harvey component

tau_2 [float] timescale of the second harvey component

sigma_2 [float] amplitude of the second harvey component

white_noise [float] the white noise component

Returns
model [numpy.ndarray] the two-Harvey model

pysyd.models.power(frequency, coefficient, exponent)
Power law

Power law distribution used to model traditional “red” noise contributions i.e. the rise in power at low frequencies
typically corresponding to long-term stellar variability

Parameters
frequency [numpy.ndarray] the frequency array

coefficient [float] the power law coefficient

exponent [float] the power law exponent

Returns
result [np.ndarray] the power law distribution

pysyd.models.white(frequency, white_noise)
Testing

class pysyd.utils.Constants

Container class for constants and known values – which is primarily solar asteroseismic values for our purposes.

UNITS ARE IN THE SUPERIOR CGS COME AT ME

exception pysyd.utils.InputError(error, width=60)
Class for pySYD user input errors (i.e., halts execution).

exception pysyd.utils.InputWarning(warning, width=60)
Class for pySYD user input warnings.

48 Chapter 3. pySYD library

pySYD Documentation, Release 6.10.5

class pysyd.utils.Parameters(args=None)
Container class for pySYD parameters

Calls super method to inherit all relevant constants and then stores the default values for all pysyd modules

Methods

add_cli(args)
Add CLI

Save any non-default parameters provided via command line but skips over any keys in the override columns
since those are star specific and have a given length – it will come back to this

Parameters
args [argparse.Namespace] the command line arguments

add_targets(stars=None)
Add targets

This was mostly added for non-command-line users, since this makes API usage easier.

check_cli(args, max_laws=3, override=['numax', 'dnu', 'lower_ex', 'upper_ex', 'lower_bg', 'upper_bg',
'lower_ps', 'upper_ps', 'lower_ech', 'upper_ech'])

Check CLI

Make sure that any command-line inputs are the proper lengths, types, etc.

Parameters
args [argparse.Namespace] the command line arguments

max_laws [int] maximum number of Harvey laws to be fit

Asserts
• the length of each array provided (in override) is equal

• the oversampling factor is an integer (if applicable)

• the number of Harvey laws to “force” is an integer (if applicable)

get_background(background=True, basis='tau_sigma', box_filter=1.0, ind_width=20.0, n_rms=20,
n_laws=None, fix_wn=False, metric='bic', lower_bg=None, upper_bg=None,
functions=None)

Background parameters

Gets parameters used during the automated background-fitting analysis

Attributes
params [Dict[str,Dict[,]]] the updated parameters

get_data(info='info/star_info.csv', todo='info/todo.txt', stars=None, mode='run', gap=20, stitch=False,
oversampling_factor=None, kep_corr=False, notching=False, dnu=None, lower_ech=None,
upper_ech=None)

Get data parser

Load parameters available in the data parser, which is mostly related to initial data loading and manipulation

Attributes
params [Dict[str,Dict[,]]] the updated parameters

3.6. Models & utilities 49

pySYD Documentation, Release 6.10.5

get_defaults()

Load defaults

Gets default pySYD parameters by calling functions which are analogous to available command-line parsers
and arguments

Attributes
params [Dict[str[Dict[,]]]] container class for pySYD parameters

Calls
• pysyd.utils.Parameters.get_parent

• pysyd.utils.Parameters.get_data

• pysyd.utils.Parameters.get_main

• pysyd.utils.Parameters.get_plot

get_estimate(estimate=True, smooth_width=20.0, binning=0.005, bin_mode='mean', step=0.25,
n_trials=3, ask=False, lower_ex=None, upper_ex=None)

Search and estimate parameters

Get parameters relevant for the optional first module that looks for and identifies power excess due to solar-
like oscillations and then estimates its properties

Attributes
params [Dict[str,Dict[,]]] the updated parameters

get_global(globe=True, numax=None, lower_ps=None, upper_ps=None, ex_width=1.0, sm_par=None,
smooth_ps=2.5, fft=True, threshold=1.0, n_peaks=5)

Global fitting parameters

Get default parameters that are relevant for deriving global asteroseismic parameters 𝜈max and ∆𝜈

Attributes
params [Dict[str,Dict[,]]] the updated parameters

get_main()

Get main parser

Load parameters available in the main parser i.e. core software functionality

Attributes
params [Dict[str,Dict[,]]] the updated parameters

Calls
• pysyd.utils.Parameters.get_estimate

• pysyd.utils.Parameters.get_background

• pysyd.utils.Parameters.get_global

• pysyd.utils.Parameters.get_sampling

get_parent(inpdir='data', infdir='info', outdir='results', save=True, test=False, verbose=False,
overwrite=False, warnings=False, cli=True, notebook=False)

Get parent parser

Load parameters available in the parent parser i.e. higher-level software functionality

50 Chapter 3. pySYD library

pySYD Documentation, Release 6.10.5

Attributes
params [Dict[str,Dict[,]]] the updated parameters

get_plot(show_all=False, show=False, cmap='binary', hey=False, clip_value=3.0, interp_ech=False,
nox=None, noy='0+0', npb=10, ridges=False, smooth_ech=None)

Get plot parser

Save all parameters related to any of the output figures

Attributes
params [Dict[str,Dict[,]]] the updated parameters

get_sampling(mc_iter=1, seed=None, samples=False, n_threads=0)
Sampling parameters

Get parameters relevant for the sampling steps i.e. estimating uncertainties

Attributes
params [Dict[str,Dict[,]]] the updated parameters

exception pysyd.utils.ProcessingError(error, width=60)
Class for pySYD processing errors (i.e., halts execution).

exception pysyd.utils.ProcessingWarning(warning, width=60)
Class for pySYD user input warnings.

pysyd.utils.delta_nu(numax)
∆𝜈

Estimates the large frequency separation using the numax scaling relation (add citation?)

Parameters
numax [float] the frequency corresponding to maximum power or numax (𝜈max)

Returns
dnu [float] the approximated frequency spacing or dnu (∆𝜈)

pysyd.utils.get_dict(type='params')
Get dictionary

Quick+convenient utility function to read in longer dictionaries that are used throughout the software

Parameters
type [{‘columns’,’params’,’plots’,’tests’,’functions’}, default=’params’] which dictionary to load in –

which MUST match their relevant filenames

Returns
result [Dict[str,Dict[,]]] the relevant (type) dictionary

Important: 'functions' cannot be saved and loaded in like the other dictionarie because it points to modules
loaded in from another file

pysyd.utils.get_infdir(args, dl_dict, note,
source='https://raw.githubusercontent.com/ashleychontos/pySYD/master/dev/')

Create info directory

3.6. Models & utilities 51

pySYD Documentation, Release 6.10.5

Parameters
args [argparse.NameSpace] command-line arguments

note [str] verbose output

dl_dict [Dict[str,str]] dictionary to keep track of files that need to be downloaded

source [str] path to pysyd source directory on github

Returns
dl_dict [Dict[str,str]] dictionary of files to download for setup

note [str] updated verbose output

pysyd.utils.get_inpdir(args, dl_dict, note, save=False, examples=['1435467', '2309595', '11618103'],
exts=['LC', 'PS'],
source='https://raw.githubusercontent.com/ashleychontos/pySYD/master/dev/')

Create data (i.e. input) directory

Parameters
args [argparse.NameSpace] command-line arguments

note [str] verbose output

dl_dict [Dict[str,str]] dictionary to keep track of files that need to be downloaded

source [str] path to pysyd source directory on github

examples [List[str]] KIC IDs for 3 example stars

exts [List[str]] data types to download for each star

Returns
dl_dict [Dict[str,str]] dictionary of files to download for setup

note [str] updated verbose output

pysyd.utils.get_outdir(args, note)
Create results directory

Parameters
args [argparse.Namespace] command-line arguments

note [str] verbose output

Returns
note [str] updated verbose output

pysyd.utils.get_output(fun=False)
Print logo output

Used within test mode when current installation is successfully tested.

Parameters
fun [bool, False] if calling module for ‘fun’, only prints logo but doesn’t test software

pysyd.utils.setup_dirs(args, note='', dl_dict={})
Setup pySYD directories

Primarily most of pipeline.setup functionality to keep the pipeline script from getting too long. Still
calls/downloads things in the same way: 1) info directory, 2) input + data directory and 3) results directory.

52 Chapter 3. pySYD library

pySYD Documentation, Release 6.10.5

Parameters
args [argparse.NameSpace] command-line arguments

note [str] verbose output

dl_dict [Dict[str,str]] dictionary to keep track of files that need to be downloaded

Returns
dl_dict [Dict[str,str]] dictionary of files to download for setup

note [str] updated verbose output

Calls
• pysyd.utils.get_infdir

• pysyd.utils.get_inpdir

• pysyd.utils.get_outdir

3.6.6 Utilities

class pysyd.utils.Parameters(args=None)
Container class for pySYD parameters

Calls super method to inherit all relevant constants and then stores the default values for all pysyd modules

Methods

add_cli(args)
Add CLI

Save any non-default parameters provided via command line but skips over any keys in the override columns
since those are star specific and have a given length – it will come back to this

Parameters
args [argparse.Namespace] the command line arguments

add_targets(stars=None)
Add targets

This was mostly added for non-command-line users, since this makes API usage easier.

check_cli(args, max_laws=3, override=['numax', 'dnu', 'lower_ex', 'upper_ex', 'lower_bg', 'upper_bg',
'lower_ps', 'upper_ps', 'lower_ech', 'upper_ech'])

Check CLI

Make sure that any command-line inputs are the proper lengths, types, etc.

Parameters
args [argparse.Namespace] the command line arguments

max_laws [int] maximum number of Harvey laws to be fit

Asserts
• the length of each array provided (in override) is equal

• the oversampling factor is an integer (if applicable)

• the number of Harvey laws to “force” is an integer (if applicable)

3.6. Models & utilities 53

pySYD Documentation, Release 6.10.5

get_background(background=True, basis='tau_sigma', box_filter=1.0, ind_width=20.0, n_rms=20,
n_laws=None, fix_wn=False, metric='bic', lower_bg=None, upper_bg=None,
functions=None)

Background parameters

Gets parameters used during the automated background-fitting analysis

Attributes
params [Dict[str,Dict[,]]] the updated parameters

get_data(info='info/star_info.csv', todo='info/todo.txt', stars=None, mode='run', gap=20, stitch=False,
oversampling_factor=None, kep_corr=False, notching=False, dnu=None, lower_ech=None,
upper_ech=None)

Get data parser

Load parameters available in the data parser, which is mostly related to initial data loading and manipulation

Attributes
params [Dict[str,Dict[,]]] the updated parameters

get_defaults()

Load defaults

Gets default pySYD parameters by calling functions which are analogous to available command-line parsers
and arguments

Attributes
params [Dict[str[Dict[,]]]] container class for pySYD parameters

Calls
• pysyd.utils.Parameters.get_parent

• pysyd.utils.Parameters.get_data

• pysyd.utils.Parameters.get_main

• pysyd.utils.Parameters.get_plot

get_estimate(estimate=True, smooth_width=20.0, binning=0.005, bin_mode='mean', step=0.25,
n_trials=3, ask=False, lower_ex=None, upper_ex=None)

Search and estimate parameters

Get parameters relevant for the optional first module that looks for and identifies power excess due to solar-
like oscillations and then estimates its properties

Attributes
params [Dict[str,Dict[,]]] the updated parameters

get_global(globe=True, numax=None, lower_ps=None, upper_ps=None, ex_width=1.0, sm_par=None,
smooth_ps=2.5, fft=True, threshold=1.0, n_peaks=5)

Global fitting parameters

Get default parameters that are relevant for deriving global asteroseismic parameters 𝜈max and ∆𝜈

Attributes
params [Dict[str,Dict[,]]] the updated parameters

54 Chapter 3. pySYD library

pySYD Documentation, Release 6.10.5

get_main()

Get main parser

Load parameters available in the main parser i.e. core software functionality

Attributes
params [Dict[str,Dict[,]]] the updated parameters

Calls
• pysyd.utils.Parameters.get_estimate

• pysyd.utils.Parameters.get_background

• pysyd.utils.Parameters.get_global

• pysyd.utils.Parameters.get_sampling

get_parent(inpdir='data', infdir='info', outdir='results', save=True, test=False, verbose=False,
overwrite=False, warnings=False, cli=True, notebook=False)

Get parent parser

Load parameters available in the parent parser i.e. higher-level software functionality

Attributes
params [Dict[str,Dict[,]]] the updated parameters

get_plot(show_all=False, show=False, cmap='binary', hey=False, clip_value=3.0, interp_ech=False,
nox=None, noy='0+0', npb=10, ridges=False, smooth_ech=None)

Get plot parser

Save all parameters related to any of the output figures

Attributes
params [Dict[str,Dict[,]]] the updated parameters

get_sampling(mc_iter=1, seed=None, samples=False, n_threads=0)
Sampling parameters

Get parameters relevant for the sampling steps i.e. estimating uncertainties

Attributes
params [Dict[str,Dict[,]]] the updated parameters

3.7 Saved outputs

We have shown examples applied to stars of various sample sizes, for different stellar types, of varying SNR detections,
both single star and many star we will not include any additional examples on this page but instead, list and describe
each of the output files. Therefore we refer the reader to check out this page, the comand-line examples or the notebook
tutorials if more examples are desired.

So while saving output files and figures is totally optional, we wanted to document them on this page since there’s a lot
of information to unpack.

Subdirectories are automatically created for each star that is processed. Based on the way you use pySYD, there are a
number of different outputs which are saved by default. Here we will list and describe them all.

We will reserve this page solely for saved outputs and hence, please see our crashteroseismology example if you’d like
more information about the printed verbose output.

3.7. Saved outputs 55

pySYD Documentation, Release 6.10.5

3.7.1 Files

Listed are all the possible output files:

1. ID_PS.txt

2. ID_BSPS.txt

3. ID_BDPS.txt

4. estimates.csv

5. global.csv

6. samples.csv

which we describe in more detail below, including the frequency and likely scenarios they arise from.

1. ID_PS.txt

(special cases)
This file is created in the case where only the time series data was provided for a target and pySYD computed a power
spectrum. This optional, extra step is important to make sure that the power spectrum used through the analyzes is both
normalized correctly and has the proper units – this ensures accurate and reliable results.

Note: unlike every other output file, this is instead saved to the data (or input directory) so that the software can find
it in later runs, which will save some time down the road. Of course you can always copy and paste it to the specific
star’s result directory if you’d like.

2. ID_BSPS.txt

(all cases)
After the best-fit background model is selected and saved, the model is generated and then subtracted from the power
spectrum to remove all noise components present in a power spectrum. Therefore, there should be little to no residual
slope left in the power spectrum after this step. This is saved as a basic text file in the star’s output directory, where the
first column is frequency (in 𝜇Hz) and the second column is power density, with units of ppm2 𝜇Hz−1 (i.e. this file
has the same units as the power spectrum).

In fact to take a step back, it might be helpful to understand the application and importance of the background-corrected
power spectrum (BCPS). The BCPS is used in subsequent steps such as computing global parameters (𝜈max and ∆𝜈)
and for constructing the echelle diagram. Therefore, we thought it might be useful to have a copy of this!

3. ID_BDPS.txt

(all cases)
Since we use both BCPS, we figured we’d clear up the muddy waters here (but also provide both copies to be used for
their specific needs).

56 Chapter 3. pySYD library

pySYD Documentation, Release 6.10.5

4. estimates.csv

(most cases)
By default, a module will run to estimate an initial value for the frequency corresponding to maximum power, or 𝜈max.
The module selects the trial with the highest signal-to-noise (SNR) and saves the comma-separated values for three
basic variables associated with the selected trial: numax, dnu, and the SNR.

The file is saved to the star’s output directory, where both numax and dnu have frequency units in 𝜇Hz and the SNR
is unitless. Remember, these are just estimates though and adapted results should come from the other csv file called
global.csv.

This module can be bypassed a few different ways, primarily by directly providing the estimate yourself. In the cases
where this estimating routine is skipped, this file will not be saved.

Note: The numax estimate is important for the main fitting routine.

4. global.csv

(all cases)

5. samples.csv

(special cases)
If the monte-carlo sampling is used to estimate uncertainties, an optional feature is available (i.e. –sampling) to save
the samples if desired.

Note: there is a new feature that saves and sets a random seed any time you are running a target for the first time and
therefore, you should be able to reproduce the samples in the event that you forget to save the samples.

3.7.2 Figures

Listed are all possible output figures for a given star (in alphabetical order):

1. background_only.png

2. bgmodel_fits.png

3. global_fit.png

4. power_spectrum.png

5. samples.png

6. search_&_estimate.png

7. time_series.png

and similar to the file section above, we describe each in more detail below.

3.7. Saved outputs 57

pySYD Documentation, Release 6.10.5

1. background_only.png

(rare cases)
This figure is produced when the user is interested in determining the stellar background model only and not the global
asteroseismic properties. For example, detecting solar-like oscillations in cool stars is extremely difficult to do but we
can still characterize other properties like their convective time scales, etc.

2. bgmodel_fits.png

(optional cases)
This figure is generated when the –show

3. global_fit.png

(almost all cases)

Top left: Original time series.
Top middle: Original power spectrum (white), lightly smoothed power spectrum (red), and binned power spectrum
(green). Blue lines show initial guesses of the fit to the granulation background. The grey region is excluded from the
background fit based on the numax estimate provided to the module.
Top right: Same as top middle but now showing the best fit background model (blue) and a heavily smoothed version
of the power spectrum (yellow)
Center left: Background corrected, heavily smoothed power spectrum (white). The blue line shows a Gaussian fit to
the data (used to calculate numax_gaussian) and the red square is the peak of the smoothed, background corrected
power excess (numax_smoothed).
Center: Lightly smoothed, background corrected power spectrum centered on numax.
Center right: Autocorrelation function of the data in the center panel. The red dotted line shows the estimate Dnu
value given the input numax value, and the red region shows the extracted ACF peak that will be used to measure
Dnu. The yellow line shows the Gaussian weighting function used to define the red region.
Bottom left: ACF peak extracted in the center right panel (white) and a Gaussian fit to that peak (green). The center
of the Gaussian is the estimate of Dnu.
Bottom middle: Echelle diagram of the background corrected power spectrum using the measured Dnu value.
Bottom right: Echelle diagram collapsed along the frequency direction.

4. power_spectrum.png

(special cases)
This is still in its developmental stage but the idea is that one is supposed to “check” a target before attempting to
process the pipeline on any data. That means checking the input data for sketchy looking features. For example, Kepler
short-cadence data has known artefacts present near the nyquist frequency for Kepler long-cadence data (∼ 270𝜇Hz).
In these cases, we have special frequency-domain tools that are meant to help mitigate such things (e.g., see pysyd.
target.Target.remove_artefact)

58 Chapter 3. pySYD library

pySYD Documentation, Release 6.10.5

5. samples.png

(many cases)
Each panel shows the samples of parameter estimates from Monte-Carlo simulations. Reported uncertainties on each
parameter are calculated by taking the robust standard deviation of each distribution.

6. search_&_estimate.png

(most cases)

Top left: Original time series.
Top middle: Original power spectrum (white) and heavily smoothed power spectrum (green). The latter is used as an
initial (crude) background fit to search for oscillations.
Top right: Power spectrum after correcting the crude background fit.
Bottom left: Frequency-resolved, collapsed autocorrelation function of the background-corrected power spectrum
using a small step size. This step size is optimized for low-frequency oscillators. The green line is a Gaussian fit to
the data, which provides the initial numax estimate.
Bottom middle: Same as bottom left but for the medium step size (optimized for subgiant stars).
Bottom right: Same as bottom left but for the large step size (optimized for main-sequence stars).

7. time_series.png

(special cases)

3.7.3 Takeaway

As we’ve said many times before, the software is optimized for running an ensemble of stars. Therefore, the utility
function pysyd.utils.scrape_output will automatically concatenate the results for each of the main modules into
a single csv in the parent results directory so that it’s easy to find and compare.

3.7.4 API

pysyd.plots.check_data(star, args, show=True)
Plot input data for a target

pysyd.plots.create_benchmark_plot(filename='comparison.png', variables=['numax', 'dnu'], show=False,
save=True, overwrite=False, npanels=2)

Compare ensemble results between the pySYD and SYD pipelines for the Kepler legacy sample

pysyd.plots.make_plots(star, show_all=False)
Make plots

Function that establishes the default plotting parameters and then calls each of the relevant plotting routines

Parameters
star [pysyd.target.Target] the pySYD pipeline object

showall [bool, optional] option to plot, save and show the different background models (default=`False`)

3.7. Saved outputs 59

pySYD Documentation, Release 6.10.5

Calls pysyd.plots.plot_estimates pysyd.plots.plot_parameters pysyd.plots.plot_bgfits
[optional] pysyd.plots.plot_samples

pysyd.plots.plot_1d_ed(star, filename='1d_ed.png', npanels=1)
Plot collapsed ED

Parameters
star [target.Target] the pySYD pipeline object

filename [str] the path or extension to save the figure to

npanels [int] number of panels in this figure (default=`1`)

pysyd.plots.plot_bgfits(star, filename='bgmodel_fits.png', highlight=True)
Comparison of the background model fits

Parameters
star [target.Target] the pySYD pipeline object

filename [str] the path or extension to save the figure to

highlight [bool, optional] if True, highlights the selected model

pysyd.plots.plot_estimates(star, filename='search_&_estimate.png', highlight=True, n=0)
Plot estimates

Creates a plot summarizing the results of the find excess routine.

Parameters
star [pysyd.target.Target] the pySYD pipeline object

filename [str] the path or extension to save the figure to

highlight [bool, default=True] option to highlight the selected estimate

pysyd.plots.plot_light_curve(star, args, filename='time_series.png', npanels=1)
Plot light curve data

Parameters
star [target.Target] the pySYD pipeline object

filename [str] the path or extension to save the figure to

npanels [int] number of panels in this figure (default=`1`)

pysyd.plots.plot_parameters(star, subfilename='background_only.png', filename='global_fit.png', n=0)
Plot parameters

Creates a plot summarizing all derived parameters

Parameters
star [pysyd.target.Target] the main pipeline Target class object

subfilename [str] separate filename in the event that only the background is being fit

filename [str] the path or extension to save the figure to

pysyd.plots.plot_power_spectrum(star, args, filename='power_spectrum.png', npanels=1)
Plot power spectrum

Parameters
star [target.Target] the pySYD pipeline object

60 Chapter 3. pySYD library

https://docs.python.org/3/library/constants.html#True

pySYD Documentation, Release 6.10.5

filename [str] the path or extension to save the figure to

npanels [int] number of panels in this figure (default=`1`)

pysyd.plots.plot_samples(star, filename='samples.png')
Plot results of the Monte-Carlo sampling

Parameters
star [target.Target] the pySYD pipeline object

filename [str] the path or extension to save the figure to

pysyd.plots.select_trial(star)
Select trial

This is called when --ask is True (i.e. select which trial to use for
𝑟𝑚
𝑛𝑢𝑚𝑎𝑥) This feature used to be called as part of a method in the pysyd.target.Target class but left a stale
figure open – this way it can be closed after the value is selected

Parameters
star [pysyd.target.Target] the pySYD pipeline object

Returns
value [int or float] depending on which trial was selected, this can be of integer or float type

3.8 What next?

You may be asking yourself, well what do I do with this information? (and that is a totally valid question to be asking)

3.9 TL;DR

If you do not have time to go through the entire user guide, we have summarized a couple important tidbits that we
think you should know before using the software.

• The first is that the userbase for the initial pySYD release was intended for non-expert astronomers. With this in
mind, the software was originally developed to be as hands-off as possible – as a *strictly* command-line
end-to-end tool. However since then, the software has become more modular in recent updates, thus enabling
broader capabilities that can be used across other applications (e.g., Jupyter notebooks).

• In addition to being a command-line tool, the software is optimized for running many stars. This means that
many of the options that one would typically use or prefer, such as printing output information and displaying
figures, is False by default. For our purposes here though, we will invoke them to better understand how the
software operates.

3.8. What next? 61

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

pySYD Documentation, Release 6.10.5

62 Chapter 3. pySYD library

CHAPTER

FOUR

USER GUIDE

There is a healthy mixture of extra details, more examples, (probably uninteresting) definitions and different applica-
tions.

We have been actively developing these broader capabilities so we are very excited to share the software with you!

4.1 Introduction

As we have alluded to throughout the documentation, pySYDwas intended to be used through its command-line interface
(CLI) – which means that the software is specifically optimized for this usage and therefore most options probably have
the best defaults already set. Here, “best” just means that the defaults work best for most stars.

However, that does not necessarily mean that your star(s) or setting(s) are expected to conform or adhere to these
settings. In fact, we recommend playing around with some of the settings to see how it affects the results, which might
help build your intuition for seismic analyses.

Note: Please keep in mind that, while we have extensively tested a majority of our options, we are continuously adding
new ones which ultimately might break something. If this happens, we encourage you to submit an issue here and thank
you in advance for helping make pySYD even better!

4.1.1 CLI help

To give you a glimpse into the insanely large amount of available options, open up a terminal window and enter the help
command for the main pipeline execution (run aka pysyd.pipeline.run), since this mode inherits all command-line
parsers.

$ pysyd run --help

usage: pySYD run [-h] [--in str] [--infdir str] [--out str] [-s] [-o] [-v]
[--cli] [--notebook] [--star [str [str ...]]] [--file str]
[--info str] [--gap int] [-x] [--of int] [-k]
[--dnu [float [float ...]]] [--le [float [float ...]]]
[--ue [float [float ...]]] [-n] [-e] [-j] [--def str]
[--sw float] [--bin float] [--bm str] [--step float]
[--trials int] [-a] [--lx [float [float ...]]]
[--ux [float [float ...]]] [-b] [--basis str] [--bf float]
[--iw float] [--rms int] [--laws int] [-w] [--metric str]
[--lb [float [float ...]]] [--ub [float [float ...]]] [-g]

(continues on next page)

63

https://github.com/ashleychontos/pySYD/issues/new?assignees=&labels=&template=bug_report.md

pySYD Documentation, Release 6.10.5

(continued from previous page)

[--numax [float [float ...]]] [--lp [float [float ...]]]
[--up [float [float ...]]] [--ew float] [--sm float]
[--sp float] [-f] [--thresh float] [--peak int] [--mc int]
[-m] [--all] [-d] [--cm str] [--cv float] [-y] [-i]
[--nox int] [--noy str] [--npb int] [--se float]

optional arguments:
-h, --help show this help message and exit

This was actually just a teaser!

If you ran it from your end, you probably noticed an output that was a factor of ~5-10 longer! It may seem like an
overwhelming amount but do not fret, this is for good reason – and that’s to make your asteroseismic experience as
customized as possible.

Currently pySYD has four parsers: the parent_parser for high-level functionality, the data_parser for anything
related to data loading and manipulation, the main_parser for everything related to the core analyses, and the
plot_parser for (yes, you guessed it!) plotting. In fact, the main parser is so large that comprises four subgroups,
each related to the corresponding steps in the main pipeline execution. BTW see here for more information on which
parsers a given pipeline mode inherits.

Sections

• high-level functionality

• data analyses

• core asteroseismic analyses

– search & estimate

– background fit

– global fit

Note: as you are navigating this page, keep in mind that we also have a special glossary for all our command-line
options. This includes everything from the variable type, default value and relevant units to how it’s stored within the
software itself. There are glossary links at the bottom of every section for each of the parameters discussed within that
subsection.

4.1.2 High-level functionality

aka the parent_parser

All pySYD modes inherent the parent_parser and therefore, mostly pertains to paths and how you choose to run the
software (i.e. save files and if so, whether or not to overwrite old files with the same extension, etc.)

--in str, --input str, --inpdir str
Input directory

--infdir str Path to relevant pySYD information
--out str, --outdir str, --output str

Output directory
-s, --save Do not save output figures and results.

(continues on next page)

64 Chapter 4. User guide

pySYD Documentation, Release 6.10.5

(continued from previous page)

-o, --overwrite Overwrite existing files with the same name/path
-v, --verbose turn on verbose output
--cli Running from command line (this should not be touched)
--notebook Running from a jupyter notebook (this should not be

touched)

Glossary terms (alphabetical order): –cli, –file, –in, –info, –information, –inpdir, –input, –list, –notebook, -o, –out,
–overwrite, -s, –save, –outdir, –output, –todo, -v, –verbose

4.1.3 Data analyses

aka the data_parser

The following features are primarily related to the input data and when applicable, what tools to apply to the data. All
data manipulation relevant to this step happens prior to any pipeline analyses. Currently this is mostly frequency-
domain tools but we are working on implementing time-domain tools as well!

--star [str [str ...]], --stars [str [str ...]]
list of stars to process

--file str, --list str, --todo str
list of stars to process

--info str, --information str
list of stellar parameters and options

--gap int, --gaps int
What constitutes a time series 'gap' (i.e. n x the
cadence)

-x, --stitch, --stitching
Correct for large gaps in time series data by
'stitching' the light curve

--of int, --over int, --oversample int
The oversampling factor (OF) of the input power
spectrum

-k, --kc, --kepcorr Turn on the Kepler short-cadence artefact correction
routine

--dnu [float [float ...]]
spacing to fold PS for mitigating mixed modes

--le [float [float ...]], --lowere [float [float ...]]
lower frequency limit of folded PS to whiten mixed
modes

--ue [float [float ...]], --uppere [float [float ...]]
upper frequency limit of folded PS to whiten mixed
modes

-n, --notch another technique to mitigate effects from mixed modes
(not fully functional, creates weirds effects for
higher SNR cases??)

Glossary terms (alphabetical order): –dnu -k, –le, –lowere, –kc, –kepcorr, –of , –over, –oversample, –star, –stars,
–stitch, –stitching, –ue, –uppere, -x

4.1. Introduction 65

pySYD Documentation, Release 6.10.5

4.1.4 Core asteroseismic analyses

aka the main_parser

The main parser holds a majority of the parameters that are relevant to core functions of the software. Since it is so
large, it is broken down into four different “groups” which are related to their application.

Search & estimate

The following options are relevant for the first, optional module that is designed to search for power excess due to
solar-like oscillations and estimate rough starting points for its main properties.

-e, --est, --estimate
Turn off the optional module that estimates numax

-j, --adjust Adjusts default parameters based on region of
oscillations

--def str, --defaults str
Adjust defaults for low vs. high numax values (e.g.,
smoothing filters)

--sw float, --smoothwidth float
Box filter width (in muHz) for smoothing the PS

--bin float, --binning float
Binning interval for PS (in muHz)

--bm str, --mode str, --bmode str
Binning mode

--step float, --steps float
--trials int, --ntrials int
-a, --ask Ask which trial to use
--lx [float [float ...]], --lowerx [float [float ...]]

Lower frequency limit of PS
--ux [float [float ...]], --upperx [float [float ...]]

Upper frequency limit of PS

Glossary terms (alphabetical order): -a, –ask, –bin, –binning, –bm, –bmode, -e, –est, –estimate, –lowerx, –lx, –mode,
–ntrials, –step, –steps, –sw, –smoothwidth, –trials, –upperx, –ux

Background fit

Below is a complete list of parameters relevant to the background-fitting routine:

-b, --bg, --background
Turn off the routine that determines the stellar
background contribution

--basis str Which basis to use for background fit (i.e. 'a_b',
'pgran_tau', 'tau_sigma'), *** NOT operational yet ***

--bf float, --box float, --boxfilter float
Box filter width [in muHz] for plotting the PS

--iw float, --indwidth float
Width of binning for PS [in muHz]

--rms int, --nrms int
Number of points to estimate the amplitude of red-
noise component(s)

(continues on next page)

66 Chapter 4. User guide

pySYD Documentation, Release 6.10.5

(continued from previous page)

--laws int, --nlaws int
Force number of red-noise component(s)

-w, --wn, --fixwn Fix the white noise level
--metric str Which model metric to use, choices=['bic','aic']
--lb [float [float ...]], --lowerb [float [float ...]]

Lower frequency limit of PS
--ub [float [float ...]], --upperb [float [float ...]]

Upper frequency limit of PS

Glossary terms (alphabetical order): -b, –background, –basis, –bf , –bg, –box, –boxfilter, –fixwn, –iw, –indwidth,
–laws, –lb, –lowerb, –metric, –nrms, –rms, –nlaws, –ub, –upperb, -w, –wn

Global parameters

All of the following are related to deriving global asteroseismic parameters, numax (𝜈max) and dnu (∆𝜈).

-g, --globe, --global
Disable the main global-fitting routine

--numax [float [float ...]]
initial estimate for numax to bypass the forst module

--lp [float [float ...]], --lowerp [float [float ...]]
lower frequency limit for the envelope of oscillations

--up [float [float ...]], --upperp [float [float ...]]
upper frequency limit for the envelope of oscillations

--ew float, --exwidth float
fractional value of width to use for power excess,
where width is computed using a solar scaling
relation.

--sm float, --smpar float
smoothing parameter used to estimate the smoothed
numax (typically before 1-4 through experience --
development purposes only)

--sp float, --smoothps float
box filter width [in muHz] of PS for ACF

-f, --fft Use :mod:`numpy.correlate` instead of fast fourier
transforms to compute the ACF

--thresh float, --threshold float
fractional value of FWHM to use for ACF

--peak int, --peaks int, --npeaks int
number of peaks to fit in the ACF

Glossary terms (alphabetical order): –ew, –exwidth, -g, –global, –globe, –lp, –lowerp, –npeaks, –numax, –peak,
–peaks, –sm, –smpar, –up, –upperp –dnu, –sp, –smoothps, –thresh

4.1. Introduction 67

pySYD Documentation, Release 6.10.5

Sampling & uncertainties

All CLI options relevant for the Monte-Carlo sampling in order to estimate uncertainties:

--mc int, --iter int, --mciter int
number of Monte-Carlo iterations to run for estimating
uncertainties (typically 200 is sufficient)

-m, --samples save samples from the Monte-Carlo sampling

Glossary terms (alphabetical order): –iter, -m, –mc, –mciter, –samples

4.1.5 Plotting

aka the plot_parser

Anything related to the plotting of results for any of the modules is in this parser. Its currently a little heavy on the
echelle diagram end because this part of the plot is harder to hack, so we tried to make it as easily customizable as
possible.

--all, --showall plot background comparison figure
-d, --show, --display

show output figures
--cm str, --color str

Change colormap of ED, which is `binary` by default
--cv float, --value float

Clip value multiplier to use for echelle diagram (ED).
Default is 3x the median, where clip_value == `3`.

-y, --hey plugin for Daniel Hey's echelle package **not
currently implemented**

-i, --ie, --interpech
turn on the interpolation of the output ED

--nox int, --nacross int
number of bins to use on the x-axis of the ED
(currently being tested)

--noy str, --ndown str, --norders str
NEW!! Number of orders to plot pm how many orders to
shift (if ED is not centered)

--npb int NEW!! npb == "number per bin", which is option instead
of nox that uses the frequency resolution and spacing
to compute an appropriate bin size for the ED

--se float, --smoothech float
Smooth ED using a box filter [in muHz]

Glossary terms (alphabetical order): –ce, –cm, –color, –cv, -d, –display, –hey, -i, –ie, –interpech, –nox, –nacross,
–ndown, –norders, –noy, –npb, –se, –show, –smoothech, –value, -y

On the next page, we will show applications for some of these options in command-line examples.

We also have our advanced usage page, which is specifically designed to show these in action by providing before and
after references. You can also find descriptions of certain commands available in the notebook tutorials.

68 Chapter 4. User guide

pySYD Documentation, Release 6.10.5

This page has command-line examples for different usage scenarios, including several customized single star applica-
tions as well as running an ensemble of stars using a single-line command.

We also tried to include examples demonstrating different signal-to-noise detections, including what to look for in each
scenario.

4.2 Single star applications

For applications to single stars, we will start with a very easy, high signal-to-noise (SNR) example, followed by medium
and low SNR examples as well as a null detection. These examples will not be as detailed as the quickstart example –
our goal here is to provide pointers on what to look for in each case.

4.2.1 A diablo detection

KIC 11618103 is our most evolved example, an RGB star with numax of ∼ 100𝜇Hz. We will now admit that while the
default settings work for most stars, some of the defaults could/should (or even in some cases need) to be changed for
more evolved stars like this example.

It doesn’t necessarily mean that it will get the answers wrong, but we will take you through a few different runs and
change some of the settings with each run.

Run 1:

If we run it straight “out-of-the-box” with our usual command:

pysyd run --star 11618103 -dv

4.2. Single star applications 69

pySYD Documentation, Release 6.10.5

70 Chapter 4. User guide

pySYD Documentation, Release 6.10.5

The autocorrelation function (or ACF) in panel 6 looks very smooth - I’d say almost a little too smooth. In fact if you
look at the panel directly to the left under “Bg-corrected PS”, the power spectrum also looks a little strange, right?

This is because our smoothing filter (or box filter) has a default value of 2.5𝜇𝐻𝑧, which is quite high for this star.
Typically a common value is 1.0𝜇𝐻𝑧, if at all, but usually much much less than our expected numax.

4.2. Single star applications 71

pySYD Documentation, Release 6.10.5

Run 2:

So for our first change, we are going to tone down the “smoothing” by setting it to zero i.e. not smoothing it at all. We
can see how that will affect the calculated ACF (again, panels 5+6).

pysyd run --star 11618103 -dv --sp 0.0

Since we are not changing anything from the first part, we will leave out the first plot for brevity.

As you can see above, the bg-corrected power spectrum and ACF both look more reasonable now – it didn’t change the
quality of the fit or our answer but it definitely looks better.

Now if you look at the echelle diagram (panel 8), it almost looks like we aren’t capturing all oscillation modes – our
ridges look cut off so let’s plot more bins on the y axis.

72 Chapter 4. User guide

pySYD Documentation, Release 6.10.5

Run 3:

We’ve tried to make the commands as obvious as possible to make it easier to digest. For example, here we are changing
the number of bins on the y axis (or –noy–noy) of the echelle diagram, which is currently equal to 5 (also corresponds
to 5 radial orders).

Let’s change it to something higher.

pysyd run --star 11618103 -dv --sp 0.0 --noy 9+0

You’ll see that we provided a keyword argument with a length of 3. The first digit is the number of bins (or radial
orders) to plot and the next two digits provide the ability to shift the entire plot up/down by n orders as well! If 0 is
provided as the second part of this value, it will center it on our expected numax. FWIW: –noy 9-0 would plot exactly
the same thing.

4.2. Single star applications 73

pySYD Documentation, Release 6.10.5

This looks a lot better and it looks like we are capturing all features in the new y-axis range. Turns out we can also
change the number of bins (or bin resolution) on the x axis of the echelle diagram as well.

Run 4:

Using basic logic, you can deduce that the relevant keyword argument here is indeed –nox. However, the number of
bins on the x axis is more arbitrary here and depends on a couple different things, primarily the spacing (or ∆𝜈) and
the frequency resolution of the power spectrum.

Since changing the number of bins using –nox is somewhat arbitrary – we’ve created an additional argument that
calculates the number of points per bin or npb (–npb). Therefore this option uses information from both the spacing
and the frequency resolution to estimate a more relevant number to use on the x axis.

pysyd run --star 11618103 -dv --sp 0.0 --noy 9+0 --npb 35

74 Chapter 4. User guide

pySYD Documentation, Release 6.10.5

But this is just the tip of the iceberg – please see our complete list of available options!

4.2.2 A hot-to-fire detection

(yes, we are using taco bell sauces to quantify the signal-to-noise of these cases) `` `1 `

We used this example for new users just getting started and therefore we will only show the output and figures. Feel
free to visit our crash course in asteroseismology, or crashteroseismology page, which breaks down every step in great
detail.

4.2. Single star applications 75

pySYD Documentation, Release 6.10.5

76 Chapter 4. User guide

pySYD Documentation, Release 6.10.5

4.2. Single star applications 77

pySYD Documentation, Release 6.10.5

4.2.3 A mild detection

As if asteroseismology wasn’t hard enough, let’s make it even more difficult for you!

KIC 8801316 is a subgiant with a numax ~1100 muHz, shown in the figures below.

static/8801316/search&_estimate_1.png

78 Chapter 4. User guide

pySYD Documentation, Release 6.10.5

_static/8801316/global_fit_1.png

4.2. Single star applications 79

pySYD Documentation, Release 6.10.5

_static/8801316/samples_1.png

This would be classified as a detection despite the low SNR due to the following reasons:

• there is a clear power excess as seen in panel 3

• the power excess has a Gaussian shape as seen in panel 5 corresponding to the solar-like oscillations

• the autocorrelation function (ACF) in panel 6 show periodic peaks

• the echelle diagram in panel 8 shows the ridges, albeit faintly

80 Chapter 4. User guide

pySYD Documentation, Release 6.10.5

4.2.4 No SNR: KIC 6278992

KIC 6278992 is a main-sequence star with no solar-like oscillations.

static/6278992/search&_estimate_1.png

4.2. Single star applications 81

pySYD Documentation, Release 6.10.5

_static/6278992/global_fit_1.png

82 Chapter 4. User guide

pySYD Documentation, Release 6.10.5

_static/6278992/samples_1.png

4.2. Single star applications 83

pySYD Documentation, Release 6.10.5

4.3 Star sample

Depending on how large your sample is, you may choose to do it one of two ways.

4.3.1 Regular mode

Since this is optimized for running many stars via command line, the star names will be read in and processed from
'info/todo.txt' if nothing else is provided:

$ pysyd run

4.3.2 Parallel mode

There is a parallel processing option included in the software, which is helpful for running many stars. This can be
accessed through the following command:

$ pysyd parallel

For parallel processing, pySYD will divide and group the list of stars based on the available number of threads. By
default, this value is 0 but can be specified via the command line. If it is not specified and you are running in parallel
mode, pySYDwill use multiprocessing package to determine the number of CPUs available on the current operating
system and then set the number of threads to this value (minus 1).

If you’d like to take up less memory, you can easily specify the number of threads with the –nthreads command:

$ pysyd parallel --nthreads 10 --list path_to_star_list.txt

4.4 Advanced options

Below are examples of different commands, including their before and after plots to demonstrate the desired effects.

4.4.1 Changing the fractional width of the power excess

via –ew & –exwidth

Fractional amount to scale the width of the oscillations envelope by – which is normally calculated w.r.t. solar values.

84 Chapter 4. User guide

pySYD Documentation, Release 6.10.5

Before After
pysyd run --star 9542776 --numax 900 pysyd run --star 9542776 --numax 900 --ew

1.5

_static/examples/9542776_before.png _static/examples/9542776_after.png

4.4.2 Mitigating known Kepler artefacts

via -k, –kc & –kepcorr

Remove the well-known Kepler short-cadence artefact that occurs at/near the long-cadence nyquist frequency (∼
270𝜇Hz) by simulating white noise

Before After
pysyd run --star 8045442 --numax 550 pysyd run --star 8045442 --numax 550 --kc

_static/examples/8045442_before.png _static/examples/8045442_after.png

4.4. Advanced options 85

pySYD Documentation, Release 6.10.5

4.4.3 Hard-wiring the lower/upper limits of the power excess

via –lp & –lowerp

Manually set the lower frequency bound (or limit) of the power excess, which is helpful in the following scenarios:

1. the width of the power excess is wildly different from that estimated by the solar scaling relation

2. artefact or strange (typically not astrophysical) feature is close to the power excess and cannot be removed other-
wise

3. power excess is near the nyquist frequency

Before After
pysyd run --star 10731424 --numax 750 pysyd run --star 10731424 --numax 750 --lp

490

_static/examples/10731424_before.png _static/examples/10731424_after.png

4.4.4 I’m not sure how I feel about this one

via –npeaks & –peaks

Change the number of peaks chosen in the autocorrelation function (ACF) - this is especially helpful for low S/N cases,
where the spectrum is noisy and the ACF has many peaks close the expected spacing (FIX THIS)

86 Chapter 4. User guide

pySYD Documentation, Release 6.10.5

Before After
pysyd run --star 9455860 pysyd run --star 9455860 --npeaks 10

_static/examples/9455860_before.png _static/examples/9455860_after.png

4.4.5 Provide estimate for numax and save some time

via –numax

Turns out that a majority of the scaling relations used in this software can be written in terms of numax and therefore
with the single estimate, we can guess the rest of the parameters (and fairly well, at that!)

If the value of 𝜈max is known, this can be provided to bypass the first module and save some time. There are also other
ways to go about doing this, please see our notebook tutorial that goes through these different ways.

4.4. Advanced options 87

pySYD Documentation, Release 6.10.5

Before After
pysyd run --star 5791521 pysyd run --star 5791521 --numax 670

_static/examples/5791521_before.png _static/examples/5791521_after.png

4.4.6 Setting different frequency limits for the

via –ux & –upperx

Set the upper frequency limit in the power spectrum when estimating 𝜈max before the main fitting routine. This is
helpful if there are high frequency artefacts that the software latches on to.

Before After
pysyd run --star 11769801 pysyd run --star 11769801 --ux 3500

_static/examples/11769801_before.png _static/examples/11769801_after.png

88 Chapter 4. User guide

pySYD Documentation, Release 6.10.5

4.4.7 Smooth the echelle diagram by using matplotlib’s built-in interpolator

via -i, –ie & –interpech

Smooth the echelle diagram output by turning on the (bilinear) interpolation, which is helpful for identifying ridges in
low S/N cases

Before After
pysyd run 3112889 --numax 871.52 pysyd run --star 3112889 --numax 871.52

--ie

_static/examples/3112889_before.png _static/examples/3112889_after.png

4.5 Interactive usage

If there’s something you would like to learn more about, you can request a new topic or tutorial by submitting a pull
request!

4.5.1 Single star

Jump down to condensed example

4.5. Interactive usage 89

pySYD Documentation, Release 6.10.5

This notebook is a basic runthrough for a single star from beginning to end

[1]: from pysyd import plots
from pysyd.target import Target
from pysyd.utils import Parameters

The Parameters object is a container class for default pySYD parameters. Since the software is customizable down to
the individual star level - we create one large, default dictionary, check for star-specific information and then copy that
to the individual star’s dictionary. So for n stars, you will have at least n keys in the main parameter dictionary.

KIC 2309595

Step 1. Load pySYD default parameters

[2]: params = Parameters()
print(params)

<Parameters>

Step 2. Add a target (or any number of targets)

[3]: name = '2309595'
params.add_targets(stars=name)

Both verbose output and displaying of figures are disabled since the software is
optimized for running many stars, so let's change those!

params.params[name]['show'], params.params[name]['verbose'] = True, True

Now that we have the relevant information we want, let’s create a pipeline Target object (or star).

Step 3. Create pipeline Target

[4]: star = Target(name, params)
print(star)

<Star 2309595>

The individual star’s dictionary is copied to the main params class for this object, so now you only have the single
dictionary (you can think of it as a pop of the main dictionary, but it makes copies instead of removing). This means
we can directly access the defaults without using the star’s name as a keyword – so now we can change whatever we
want directly!

[5]: print(star.params)

{'path': '/Users/ashleychontos/Research/Code/special/pySYD/docs/usage/nb/results/2309595
→˓', 'show': True, 'save': True, 'test': False, 'verbose': True, 'overwrite': False,
→˓'warnings': False, 'stitch': False, 'gap': 20, 'kep_corr': False, 'oversampling_factor
→˓': None, 'estimate': True, 'seed': None, 'numax': None, 'force': False, 'dnu': None,
→˓'binning': 0.005, 'bin_mode': 'mean', 'lower_ex': None, 'upper_ex': None, 'step': 0.25,
→˓ 'smooth_width': 20.0, 'n_trials': 3, 'ask': False, 'background': True, 'basis': 'tau_
→˓sigma', 'box_filter': 1.0, 'fix_wn': False, 'n_laws': None, 'ind_width': 20.0, 'lower_
→˓bg': None, 'upper_bg': None, 'metric': 'bic', 'n_rms': 20, 'globe': True, 'ex_width':␣
→˓1.0, 'lower_ps': None, 'upper_ps': None, 'sm_par': None, 'n_peaks': 5, 'smooth_ps': 2.
→˓5, 'fft': True, 'threshold': 1.0, 'hey': False, 'cmap': 'binary', 'clip_value': 3.0,
→˓'interp_ech': False, 'notching': False, 'lower_ech': None, 'upper_ech': None, 'npb':␣
→˓10, 'nox': None, 'noy': '0+0', 'ridges': False, 'smooth_ech': None, 'mc_iter': 1,
→˓'samples': False, 'n_threads': 0, 'inpdir': '/Users/ashleychontos/Research/Code/
→˓special/pySYD/docs/usage/nb/data', 'infdir': '/Users/ashleychontos/Research/Code/
→˓special/pySYD/docs/usage/nb/info', 'outdir': '/Users/ashleychontos/Research/Code/
→˓special/pySYD/docs/usage/nb/results', 'todo': '/Users/ashleychontos/Research/Code/
→˓special/pySYD/docs/usage/nb/info/todo.txt', 'info': '/Users/ashleychontos/Research/
→˓Code/special/pySYD/docs/usage/nb/info/star_info.csv', 'show_all': False, 'functions':
→˓{0: <function get_dict.<locals>.<lambda> at 0x13eb660e0>, 1: <function get_dict.
→˓<locals>.<lambda> at 0x13eb66170>, 2: <function get_dict.<locals>.<lambda> at␣
→˓0x13eb66200>, 3: <function get_dict.<locals>.<lambda> at 0x13eb66290>, 4: <function␣
→˓get_dict.<locals>.<lambda> at 0x13eb66320>, 5: <function get_dict.<locals>.<lambda> at␣
→˓0x13eb663b0>, 6: <function get_dict.<locals>.<lambda> at 0x13eb66440>, 7: <function␣
→˓get_dict.<locals>.<lambda> at 0x13eb664d0>}, 'cli': True, 'notebook': False, 'ech_mask
→˓': None}

(continues on next page)

90 Chapter 4. User guide

pySYD Documentation, Release 6.10.5

(continued from previous page)

Now we will attempt to load in the target data which will return a boolean that says if it’s ok to proceed.

[6]: print(star.load_data())

ERROR: no data found for target 2309595
-> please make sure you are in the correct

directory and try again!

False

Well, glad that worked as expected. By default it assumes that the input data and information reside in the current
working directory (which is not the case here because I live in the documentation folder). Let’s change the paths and
try again!

(i.e. I am going to use the path that works for my example notebook but you will need to change this to wherever your
example data are)

[7]: star.params['inpdir']='/Users/ashleychontos/Research/Code/special/pySYD/dev/data/'
star.params['infdir']='/Users/ashleychontos/Research/Code/special/pySYD/dev/info/'
star.params['outdir']='/Users/ashleychontos/Research/Code/special/pySYD/dev/results/'

print(star.load_data())

Target: 2309595

LIGHT CURVE: 41949 lines of data read
Time series cadence: 59 seconds
POWER SPECTRUM: 106123 lines of data read
PS oversampled by a factor of 5
PS resolution: 0.400298 muHz
True

Looks like we’re ready to go!

Let’s estimate some starting points for the main module.

Step 3. Estimate parameters

[8]: star.estimate_parameters()
plots.plot_estimates(star)

PS binned to 224 datapoints

Numax estimates

Estimate 1: 636.51 +/- 10.12
S/N: 10.88

(continues on next page)

4.5. Interactive usage 91

pySYD Documentation, Release 6.10.5

(continued from previous page)

Estimate 2: 656.61 +/- 29.93
S/N: 9.60
Estimate 3: 686.28 +/- 85.35
S/N: 7.38
Selecting model 1

All the trials give consistent answers for 𝜈max that I also agree with by eye, so I think we can move on to the full fit.

Step 4. Derive parameters

[9]: star.derive_parameters()
plots.plot_parameters(star)

GLOBAL FIT

PS binned to 397 data points

Background model

Comparing 8 different models:
Model 0: 0 Harvey-like component(s) + white noise fixed
BIC = 39836.17 | AIC = 100.34
Model 1: 0 Harvey-like component(s) + white noise term
BIC = 40791.87 | AIC = 102.74

(continues on next page)

92 Chapter 4. User guide

pySYD Documentation, Release 6.10.5

(continued from previous page)

Model 2: 1 Harvey-like component(s) + white noise fixed
BIC = 39848.14 | AIC = 100.35
Model 3: 1 Harvey-like component(s) + white noise term
BIC = 40803.88 | AIC = 102.75
Model 4: 2 Harvey-like component(s) + white noise fixed
BIC = 39860.10 | AIC = 100.36
Model 5: 2 Harvey-like component(s) + white noise term
BIC = 40815.81 | AIC = 102.76
Model 6: 3 Harvey-like component(s) + white noise fixed
BIC = 39872.07 | AIC = 100.37
Model 7: 3 Harvey-like component(s) + white noise term
BIC = 40828.11 | AIC = 102.77
Based on BIC statistic: model 0

AttributeError Traceback (most recent call last)
Input In [9], in <cell line: 1>()
----> 1 star.derive_parameters()

2 plots.plot_parameters(star)

File /usr/local/lib/python3.10/site-packages/pysyd/target.py:987, in Target.derive_
→˓parameters(self, mc_iter)
985 # get initial values and fix data
986 self.initial_parameters()

--> 987 self.first_step()
988 # if the first step is ok, carry on
989 if self.params['mc_iter'] > 1:

File /usr/local/lib/python3.10/site-packages/pysyd/target.py:1165, in Target.first_
→˓step(self, background, globe)
1163 # Background corrections
1164 self.estimate_background()

-> 1165 self.model_background()
1166 # Global fit
1167 if self.params['globe']:
1168 # global fit

File /usr/local/lib/python3.10/site-packages/pysyd/target.py:1428, in Target.model_
→˓background(self, n_laws, fix_wn, basis)
1426 # Did the fit converge
1427 if np.isfinite(min(self.params[self.params['metric']])):

-> 1428 self.correct_background()
1429 # Otherwise raise error that fit did not converge
1430 else:
1431 self.converge = False

File /usr/local/lib/python3.10/site-packages/pysyd/target.py:1483, in Target.correct_
→˓background(self, metric)
1481 self.bg_div = self.random_pow/models.background(self.frequency, self.params['pars

→˓'], noise=self.params['noise'])
1482 if self.params['save']:

-> 1483 utils.save_file(self.frequency, self.bg_div, os.path.join(self.params['path
→˓'], '%s_BDPS.txt'%self.name), overwrite=self.params['overwrite'])

(continues on next page)

4.5. Interactive usage 93

pySYD Documentation, Release 6.10.5

(continued from previous page)

1484 self.bg_sub = self.random_pow-models.background(self.frequency, self.params['pars
→˓'], noise=self.params['noise'])
1485 if self.params['save']:

AttributeError: module 'pysyd.utils' has no attribute 'save_file'

In the verbose output, the ‘output parameters’ have no uncertainties on the derived values. This is because the number
of iterations is 1 by default, for a single iteration. You also might’ve noticed that there are two different estimates for
𝜈max. For posterity, the ``SYD`` pipeline also estimated both of these values but traditionally used 𝜈max,smooth

within the literature. *We recommend that you do the same.*
To estimate uncertainties for these parameters, we’ll need to set the number of iterations to something much higher
(typically on the order of a hundred or so).

Step 5. Derive uncertainties

[10]: star.params['show'], star.params['mc_iter'] = False, 200
star.process_star()

PS binned to 224 datapoints

Numax estimates

Estimate 1: 636.51 +/- 10.12
S/N: 10.88
Estimate 2: 656.61 +/- 29.93
S/N: 9.60
Estimate 3: 686.28 +/- 85.35
S/N: 7.38
Selecting model 1

GLOBAL FIT

PS binned to 397 data points

Background model

Comparing 4 different models:
Model 0: 0 Harvey-like component(s) + white noise fixed
BIC = 39836.17 | AIC = 100.34
Model 1: 1 Harvey-like component(s) + white noise fixed
BIC = 39848.14 | AIC = 100.35
Model 2: 2 Harvey-like component(s) + white noise fixed
BIC = 39860.10 | AIC = 100.36
Model 3: 3 Harvey-like component(s) + white noise fixed
BIC = 39872.07 | AIC = 100.37
Based on BIC statistic: model 0

AttributeError Traceback (most recent call last)
Input In [10], in <cell line: 2>()

(continues on next page)

94 Chapter 4. User guide

pySYD Documentation, Release 6.10.5

(continued from previous page)

1 star.params['show'], star.params['mc_iter'] = False, 200
----> 2 star.process_star()

File /usr/local/lib/python3.10/site-packages/pysyd/target.py:157, in Target.process_
→˓star(self)
155 self.params['results'], self.params['plotting'] = {}, {}
156 self.estimate_parameters()

--> 157 self.derive_parameters()
158 if self.params['test']:
159 return self.params['results'].pop('parameters')

File /usr/local/lib/python3.10/site-packages/pysyd/target.py:987, in Target.derive_
→˓parameters(self, mc_iter)
985 # get initial values and fix data
986 self.initial_parameters()

--> 987 self.first_step()
988 # if the first step is ok, carry on
989 if self.params['mc_iter'] > 1:

File /usr/local/lib/python3.10/site-packages/pysyd/target.py:1165, in Target.first_
→˓step(self, background, globe)
1163 # Background corrections
1164 self.estimate_background()

-> 1165 self.model_background()
1166 # Global fit
1167 if self.params['globe']:
1168 # global fit

File /usr/local/lib/python3.10/site-packages/pysyd/target.py:1428, in Target.model_
→˓background(self, n_laws, fix_wn, basis)
1426 # Did the fit converge
1427 if np.isfinite(min(self.params[self.params['metric']])):

-> 1428 self.correct_background()
1429 # Otherwise raise error that fit did not converge
1430 else:
1431 self.converge = False

File /usr/local/lib/python3.10/site-packages/pysyd/target.py:1483, in Target.correct_
→˓background(self, metric)
1481 self.bg_div = self.random_pow/models.background(self.frequency, self.params['pars

→˓'], noise=self.params['noise'])
1482 if self.params['save']:

-> 1483 utils.save_file(self.frequency, self.bg_div, os.path.join(self.params['path
→˓'], '%s_BDPS.txt'%self.name), overwrite=self.params['overwrite'])
1484 self.bg_sub = self.random_pow-models.background(self.frequency, self.params['pars

→˓'], noise=self.params['noise'])
1485 if self.params['save']:

AttributeError: module 'pysyd.utils' has no attribute 'save_file'

4.5. Interactive usage 95

pySYD Documentation, Release 6.10.5

Step 6. Peep results

[11]: star.params['show'] = True
plots.plot_samples(star)

AttributeError Traceback (most recent call last)
Input In [11], in <cell line: 2>()

1 star.params['show'] = True
----> 2 plots.plot_samples(star)

File /usr/local/lib/python3.10/site-packages/pysyd/plots.py:472, in plot_samples(star,␣
→˓filename)
461 def plot_samples(star, filename='samples.png'):
462 """
463 Plot results of the Monte-Carlo sampling
464
(...)
470
471 """

--> 472 x, y = d[len(star.df.columns.values.tolist())]['x'], d[len(star.df.columns.
→˓values.tolist())]['y']
473 params = utils.get_dict()
474 sample = star.params['plotting']['samples']

AttributeError: 'Target' object has no attribute 'df'

As you can see, it still liked the same model (good sanity check) and the derived value for 𝜈max was robust to this and
did not change.

So now we have both parameters and uncertainties!

4.5.2 Condensed version

[Putting it all together with star.process_star()]

[]: name='2309595'
params = Parameters()
params.add_targets(stars=name)
params.params[name]['verbose'], params.params[name]['mc_iter'] = True, 200
star = Target(name, params)
if star.load_data():

star.process_star()

96 Chapter 4. User guide

pySYD Documentation, Release 6.10.5

4.5.3 Estimating 𝜈max hacks

For first-time users, we’ll assume you do not know what 𝜈max is for a given star [and that’s totally ok]

In these scenarios, we have a convenient built-in method that uses the available information and/or data on a target
to estimate a value for numax (𝜈max). This is really helpful (and *strongly encouraged*) for our non-expert users.
The primary reason for this is that the main module (i.e. the global fit) derives all parameters but models the stellar
background and solar-like oscillations separately in two steps.

Basically we use the estimated 𝜈max to mask out the region in the power spectrum believed to be exhibiting the solar-
like oscillations so that it will not influence the stellar background estimates. The reverse is also true, hence why we do
this in two steps. Consequently, we correct for the background contribution in the power spectrum before measuring
our global properties 𝜈max and ∆𝜈.

𝜈max hack summary

There are three main ways to brute force 𝜈max while still running the pysyd.target.Target.
estimate_parameters method:

• **Option 1:** enter the desired trial number by using the --ask flag

• **Option 2:** provide your own value for 𝜈max by using the same flag

• **Option 3:** use an upper frequency limit to cut out sharp (likely not astrophysical) features in the power
spectrum

[1]: from pysyd.utils import Parameters
from pysyd import plots
from pysyd.target import Target

Load in default settings for KIC 1435467

Since pySYD is optimized for command-line use as well as processing multiple stars, a lot of the options such as showing
figures and printing verbose output are disabled. However for demonstration purposes, we’ll change two of the defaults.

[2]: params = Parameters()
params.add_targets(stars=['1435467'])
star = Target('1435467', params)
star.params['verbose'], star.params['upper_ex'] = True, None
if star.load_data():

star.estimate_parameters()

Target: 1435467

LIGHT CURVE: 37919 lines of data read
Time series cadence: 59 seconds
POWER SPECTRUM: 99518 lines of data read
PS oversampled by a factor of 5

(continues on next page)

4.5. Interactive usage 97

pySYD Documentation, Release 6.10.5

(continued from previous page)

PS resolution: 0.426868 muHz

PS binned to 219 datapoints

Numax estimates

Estimate 1: 7859.47 +/- 8.34
S/N: 12.19
Estimate 2: 7876.29 +/- 27.05
S/N: 6.73
Estimate 3: 1457.85 +/- 90.46
S/N: 9.25
Selecting model 1

By default, it selects the trial that has the highest signal-to-noise (S/N) detection – which here was the first estimate
with S/N ~12. However, the value for numax is really high (𝜈max ∼ 7860𝜇Hz) and is likely latching on to an artefact
or something else that is not astrophysical.

To be sure though, let’s take a look at the plots and results to see what’s going on.

Plot estimates

[3]: star.params['show'] = True
plots.plot_estimates(star)

98 Chapter 4. User guide

pySYD Documentation, Release 6.10.5

As suspected, it selected and highlighted the first “trial” due to some high frequency artefact. It was still behaving how
it was expected to, but that’s not the type of feature we are looking for. In the upper righthand corner, we can see power
excess in the ~1000-2000 muHz frequency region.

We have a few options of how we can go about this. The first is to provide an upper frequency limit that will restrict
the power spectrum to below that large spike. Although, if you take a look at the lower righthand corner, the third trial
does end up estimating a good value for numax. Therefore we can brute force this trial with the --ask option, which
is False by default.

Option 1: enter the trial number

We will re-load the star and this time change the --ask command to True. This option will literally ask you which trial
you prefer. This will also display the plot regardless of your preset options, that way you can make the most informed
decision for which to select. As a result, we do not recommend using this for many stars.

[4]: star.params['ask'] = True
star.estimate_parameters()

PS binned to 219 datapoints

Numax estimates

Estimate 1: 7859.47 +/- 8.34
S/N: 12.19
Estimate 2: 7876.29 +/- 27.05
S/N: 6.73
Estimate 3: 1457.85 +/- 90.46
S/N: 9.25

Which estimate would you like to use? 3
Selecting model 3

Now we can feel more confident about the value that we provide to the main method.

Before we go to our other main alternative (masking the higher frequencies), there’s one other thing I’d like to point
out. Let’s assume that all three of these trials had bogus values but we are pretty confident that the numax was around
~1450. Turns out that we an use the same flag but instead, provide our own value.

4.5. Interactive usage 99

pySYD Documentation, Release 6.10.5

Option 2: provide your own estimate

[5]: star.params['ask'] = True
star.estimate_parameters()

PS binned to 219 datapoints

Numax estimates

Estimate 1: 7859.47 +/- 8.34
S/N: 12.19
Estimate 2: 7876.29 +/- 27.05
S/N: 6.73
Estimate 3: 1457.85 +/- 90.46
S/N: 9.25

Which estimate would you like to use? 5
ERROR: please select an integer between 1 and 3

(or 0 to provide your own value for numax)

Which estimate would you like to use? 0

What is your value for numax? 1400.00
Using numax of 1400.00 muHz as an initial guess

So we intentionally provided an integer value for a trial that does not exist so you could see the alternate option(s) for
input data. By entering 0, we are able to provide a float number that we will set numax to.

The plot will still show the three trials but you might’ve noticed that it didn’t highlight any trials since we are using our
own value.

Finally, we can catch this problem earlier on by providing an upper frequency limit for the power spectrum that is used
in this routine.

100 Chapter 4. User guide

pySYD Documentation, Release 6.10.5

Option 3: Provide upper limit

Another option is to set the upper frequency limit (--upper_ex) to something below the high-frequency artefacts, say
6000𝜇Hz.

Note: you’ll notice there are a lot of lower/upper bounds but their naming will start to make sense as you use the
software more. For example, this first routine that estimates numax used to be called find_excess() (since that’s
technically what it does!) and hence, the “ex” for the flag. The same is true for the BackGround-fitting routine
(--lower_bg/--upper_bg)

[6]: star.params['ask'], star.params['upper_ex'] = False, 6000.0
star.estimate_parameters()

PS binned to 189 datapoints

Numax estimates

Estimate 1: 1430.02 +/- 72.61
S/N: 2.43
Estimate 2: 1479.46 +/- 60.64
S/N: 4.87
Estimate 3: 1447.42 +/- 93.31
S/N: 13.72
Selecting model 3

Remember that the figure was only displaying because we enacted the --ask option, so let’s double check the figure
to be sure.

[7]: plots.plot_estimates(star)

4.5. Interactive usage 101

pySYD Documentation, Release 6.10.5

If you look in the upper righthand corner of the figure, you’ll notice that the power spectrum only goes up to 6000𝜇Hz
this time. That enabled three nice, equally-usable trial runs but you can see that the values for 𝜈max are all consistent
with one another to within ±1𝜎. Therefore any of these guesses would suffice!

4.6 pySYD option glossary

Below is a complete list of pySYD parameters in alphabetical order.

-a, --ask

the option to select which trial (or estimate) of numax to use from the first module
• dest = args.ask

• type = bool

• default = False

• action = store_true

• see also: –trials, –ntrials

--all, --showall creates an additional figure that shows all the iterated background models, which will highlight
the selected model

• dest = args.showall

• type = bool

102 Chapter 4. User guide

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

pySYD Documentation, Release 6.10.5

• default = False

• action = store_true

-b, --bg, --background controls the background-fitting procedure – BUT this should never be touched since a
majority of the work done in the software happens here and it should not need to be turned off

• dest = args.background

• type = bool

• default = True

• action = store_false

--basis which basis to use for the background fitting (i.e. 'a_b', 'pgran_tau', 'tau_sigma'), NOT OPERA-
TIONAL YET

• dest = args.basis

• type = str

• default = 'tau_sigma'

--bf, --box, --boxfilter box filter width for plotting the power spectrum TODO: make sure this does not affect
any actual measurements and this is just an aesthetic

• dest = args.box_filter

• type = float

• default = 1.0

• unit = 𝜇Hz

--bin, --binning interval for the binning of spectrum in log(𝜇Hz) this bins equally in logspace

• dest = args.binning

• type = float

• default = 0.005

• unit = log(𝜇Hz)

--bm, --mode, --bmode which mode to choose when binning. Choices are ~["mean", "median", "gaussian"]

• dest = args.mode

• type = str

• default = "mean"

--ce, --cm, --color change the colormap used in the echelle diagram, which is 'binary' by default

• dest = args.cmap

• type = str

• default = 'binary'

--cv, --value the clip value to use for the output echelle diagram if and only if args.clip_ech is True. If none
is provided, it will use a value that is 3x the median value of the folded power spectrum

• dest = args.clip_value

• type = float

• default = 3.0

4.6. pySYD option glossary 103

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

pySYD Documentation, Release 6.10.5

• unit = fractional psd

--cli

this should never be touched - for internal workings on how to retrieve and save parameters
• dest = args.cli

• type = bool

• default = True

• action = store_true

-d, --show, --display show output figures, which is not recommended if running many stars

• dest = args.show

• type = bool

• default = False

• action = store_true

--dnu option to provide the spacing to fold the power spectrum and “whiten” effects due to mixed modes (pysyd.
target.Target.whiten_mixed), which also requires a lower and upper folded frequency (i.e. <= dnu) via –le
and –ue

• dest = args.dnu

• type = float

• nargs = '*'

• default = None

• **REQUIRES:** –le/–lowere and –ue/–uppere

-e, --est, --estimate turn off the first module that searches and idenities power excess due to solar-like oscilla-
tions, which will automatically happen if numax is provided

• dest = args.estimate

• type = bool

• default = True

• action = store_false

--ew, --exwidth the fractional value of the width to use surrounding the power excess, which is computed using a
solar scaling relation (and then centered on the estimated 𝜈max)

• dest = args.width

• type = float

• default = 1.0

• unit = fractional 𝜇Hz

• see also: –lp, –lowerp, –up, –upperp

-f, --fft

use the numpy.correlate module instead of FFTs to compute the ACF
• dest = args.fft

• type = bool

104 Chapter 4. User guide

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

pySYD Documentation, Release 6.10.5

• default = True

• action = store_false

--file, --list, --todo the path to the text file that contains the list of stars to process, which is convenient for
running many stars

• dest = args.file

• type = str

• default = TODODIR

• see also: –star, –stars

-g, --globe, --global do not estimate the global asteroseismic parameter numax and dnu. This is helpful for
the application to cool dwarfs, where detecting solar-like oscillations is quite difficult but you’d still like to
characterize the granulation components.

• dest = args.globe

• type = bool

• default = True

• action = store_false

--gap, --gaps

what constitutes a time series gap (i.e. how many cadences)
• dest = args.gap

• type = int

• default = 20

• see also: -x, –stitch, –stitching

-i, --ie, --interpech turn on the bilinear interpolation of the plotted echelle diagram

• dest = args.interp_ech

• type = bool

• default = False

• action = store_true

• see also: –se, –smoothech

--in, --input, --inpdir

path to the input data
• dest = args.inpdir

• type = str

• default = INPDIR

--infdir

path to relevant pySYD information (defined in init file)
• dest = args.infdir

• type = str

• default = INFDIR

4.6. pySYD option glossary 105

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pySYD Documentation, Release 6.10.5

• see also: –file, –info, –information, –list, –todo

--info, --information path to the csv containing all the stellar information (although not required)

• dest = args.info

• type = str

• default = star_info.csv

--iw, --indwidth width of binning for the power spectrum used in the first module TODO: CHECK THIS
• dest = args.ind_width

• type = float

• default = 20.0

• unit = 𝜇Hz

-k, --kc, --kepcorr turn on the Kepler short-cadence artefact correction module. if you don’t know what a Kepler
short-cadence artefact is, chances are you shouldn’t mess around with this option yet

• dest = args.kepcorr

• type = bool

• default = False

• action = store_true

--laws, --nlaws force the number of red-noise component(s). fun fact: the older IDL version of SYD fixed this
number to 2 for the Kepler legacy sample – now we have made it customizable all the way down to an individual
star!

• dest = args.n_laws

• type = int

• default = None

• see also: -w, -wn, –fixwn

--lb, --lowerb the lower frequency limit of the power spectrum to use in the background-fitting routine. Please
note: unless 𝜈max is known, it is highly recommended that you do not fix this beforehand

• dest = args.lower_bg

• type = float

• nargs = '*'

• default = 1.0

• unit = 𝜇Hz

• see also: –ub, –upperb

--le, --lowere the lower frequency limit of the folded power spectrum to “whiten” mixed modes before estimating
the final value for dnu

• dest = args.lower_ech

• type = float

• nargs = '*'

• default = None

• unit = 𝜇Hz

106 Chapter 4. User guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

pySYD Documentation, Release 6.10.5

• REQUIRES: –ue/–uppere and –dnu

--lp, --lowerp to change the lower frequency limit of the zoomed in power spectrum (i.e. the region with the
supposed power excess due to oscillations). Similar to –ew but instead of a fractional value w.r.t. the scaled solar
value, you can provide hard boundaries in this case TODO check if it requires and upper bound – pretty sure it
doesn’t but should check

• dest = args.lower_ps

• type = float

• nargs = '*'

• default = None

• unit = 𝜇Hz

• see also: –up, –upperp

--lx, --lowerx the lower limit of the power spectrum to use in the first module (to estimate numax)

• dest = args.lower_ex

• type = float

• default = 1.0

• unit = 𝜇Hz

• see also: –ux, –upperx

-m, --samples option to save the samples from the Monte-Carlo sampling (i.e. parameter posteriors) in case you’d
like to reproduce your own plots, etc.

• dest = args.samples

• type = bool

• default = False

• action = store_true

--mc, --iter, --mciter number of Monte-Carlo-like iterations. This is 1 by default, since you should always
check the data and output figures before running the sampling algorithm. But for purposes of generating uncer-
tainties, n=200 is typically sufficient.

• dest = args.mc_iter

• type = int

• default = 1

--metric which model metric to use for the best-fit background model, current choices are ~['bic', 'aic'] but still
being developed and tested

• dest = args.metric

• type = str

• default = 'bic'

-n, --notch use notching technique to reduce effects from mixes modes (pretty sure this is not full functional yet,
creates weird effects for higher SNR cases)

• dest = args.notching

• type = bool

• default = False

4.6. pySYD option glossary 107

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False

pySYD Documentation, Release 6.10.5

• action = store_true

--notebook similar to –cli, this should not need to be touched and is primarily for internal workings and how to
retrieve parameters

• dest = args.notebook

• type = bool

• default = False

• action = store_true

--nox, --nacross specifies the number of bins (i.e. the resolution) to use for the x-axis of the echelle diagram –
fixing this number if complicated because it depends on both the resolution of the power spectrum as well as
the characteristic frequency separation. This is another example where, if you don’t know what this means, you
probably should not change it.

• dest = args.nox

• type = int

• default = None

• see also: –noy, –ndown, –norders, –npb

--noy, --ndown, --norders specifies the number of bins (or radial orders) to use on the y-axis of the echelle
diagram NEW: option to shift the entire figure by n orders - the first part of the string is the number of orders to
plot and the +/- n is the number orders to shift the ED by

• dest = args.noy

• type = str

• default = 0+0

• see also: –nox, –nacross, –npb

--npb option for echelle diagram to use information from the spacing and frequency resolution to calculate a better
grid resolution (npb == number per bin)

• dest = args.npb

• type = int

• default = 10

• see also: –nox, –nacross, –noy, –ndown, –norders

--nt, --nthread, --nthreads the number of processes to run in parallel. If nothing is provided when you run
in pysyd.parallel mode, the software will use the multiprocessing package to determine the number of
CPUs on the operating system and then adjust accordingly. In short: this probably does not need to be changed

• dest = args.n_threads

• type = int

• default = 0

--numax brute force method to bypass the first module and provide an initial starting value for 𝜈max Asserts
len(args.numax) == len(args.targets) * dest = args.numax * type = float * nargs = '*' * default =
None * unit = 𝜇Hz

-o, --overwrite newer option to overwrite existing files with the same name/path since it will now add extensions
with numbers to avoid overwriting these files

• dest = args.overwrite

108 Chapter 4. User guide

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

pySYD Documentation, Release 6.10.5

• type = bool

• default = False

• action = store_true

--of, --over, --oversample the oversampling factor of the provided power spectrum. Default is 0, which means
it is calculated from the time series data. Note: this needs to be provided if there is no time series data!

• dest = args.oversampling_factor

• type = int

• default = None

--out, --output, --outdir path to save results to

• dest = args.outdir

• type = str

• default = 'OUTDIR'

--peak, --peaks, --npeaks the number of peaks to identify in the autocorrelation function

• dest = args.n_peaks

• type = int

• default = 5

--rms, --nrms the number of points used to estimate the amplitudes of individual background (red-noise) compo-
nents Note: this should only rarely need to be touched

• dest = args.n_rms

• type = int

• default = 20

-s, --save turn off the automatic saving of output figures and files

• dest = args.save

• type = bool

• default = True

• action = store_false

--se, --smoothech option to smooth the echelle diagram output using a box filter of this width

• dest = args.smooth_ech

• type = float

• default = None

• unit = 𝜇Hz

• see also: -e, –ie, –interpech

--sm, --smpar the value of the smoothing parameter to estimate the smoothed numax (that is really confusing) note:
typical values range from 1-4 but this is fixed based on years of trial & error

• dest = args.sm_par

• type = float

• default = None

4.6. pySYD option glossary 109

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

pySYD Documentation, Release 6.10.5

• unit = fractional 𝜇Hz

--sp, --smoothps the box filter width used for smoothing of the power spectrum. The default is 2.5 but will switch
to 0.5 for more evolved stars (if 𝜈max < 500 𝜇Hz)

• dest = args.smooth_ps

• type = float

• default = 2.5

• unit = 𝜇Hz

--star, --stars list of stars to process. Default is None, which will read in the star list from args.file instead

• dest = args.star

• type = str

• nargs = '*'

• default = None

• see also: –file, –list, –todo

--step, --steps the step width for the collapsed autocorrelation function w.r.t. the fraction of the boxsize. Please
note: this should not be adjusted

• dest = args.step

• type = float

• default = 0.25

• unit = fractional 𝜇Hz

--sw, --smoothwidth the width of the box filter that is used to smooth the power spectrum

• dest = args.smooth_width

• type = float

• default = 20.0

• unit = 𝜇Hz

• see also: –sp, –smoothps

Warning: All parameters are optimized for most star types but some may need adjusting. An example is the
smoothing width (--sw), which is 20 muHz by default, but may need to be adjusted based on the nyquist frequency
and frequency resolution of the input power spectrum.

--thresh, --threshold the fractional value of the autocorrelation function’s full width at half maximum (which
is important in this scenario because it is used to determine ∆𝜈)

• dest = args.threshold

• type = float

• default = 1.0

• unit = fractional 𝜇Hz

--trials, --ntrials the number of trials used to estimate numax in the first module – can be bypassed if –numax
is provided.

• dest = args.n_trials

110 Chapter 4. User guide

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pySYD Documentation, Release 6.10.5

• type = int

• default = 3

--ub, --upperb the upper limit of the power spectrum used in the background-fitting module Please note: unless
𝜈max is known, it is highly recommended that you do not fix this beforehand

• dest = args.upper_bg

• type = float

• nargs = '*'

• default = 6000.0

• unit = 𝜇Hz

• see also: –lb, –lowerb

--ue, --uppere the upper frequency limit of the folded power spectrum used to “whiten” mixed modes before
determining the correct ∆𝜈

• dest = args.upper_ech

• type = float

• nargs = '*'

• default = None

• unit = 𝜇Hz

• REQUIRES: –le/–lowere and –dnu

--up, --upperp the upper frequency limit used for the zoomed in power spectrum. In other words, this is an option
to use a different upper bound than the one determined automatically

• dest = args.upper_ps

• type = float

• nargs = '*'

• default = None

• unit = 𝜇Hz

• see also: –lp, –lowerp

--ux, --upperx the upper frequency limit of the power spectrum to use in the first module

• dest = args.upper_ex

• type = float

• default = 6000.0

• unit = 𝜇Hz

• see also: –lx, –lowerx

-v, --verbose turn on the verbose output (also not recommended when running many stars, and definitely not when
in parallel mode) Check this but I think it will be disabled automatically if the parallel mode is True

• dest = args.verbose

• type = bool

• default = False

4.6. pySYD option glossary 111

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False

pySYD Documentation, Release 6.10.5

• action = store_true

-w, --wn, --fixwn

fix the white noise level in the background fitting TODO: this still needs to be tested
• dest = args.fix

• type = bool

• default = False

• action = store_true

• see also: –laws, –nlaws

-x, --stitch, --stitching

correct for large gaps in time series data by ‘stitching’ the light curve
• dest = args.stitch

• type = bool

• default = False

• action = store_true

• see also: –gap, –gaps

-y, --hey plugin for Daniel Hey’s interactive echelle package but is not currently implemented TODO
• dest = args.hey

• type = bool

• default = False

• action = store_true

4.7 et al.

Please share how we can make your experience even better!

We love hearing new ideas – if you feel like there’s something missing or literally anything you’d like to learn more
about, you can request a new topic/tutorial by submitting a pull request.

112 Chapter 4. User guide

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False

CHAPTER

FIVE

GLOSSARY OF DOCUMENTATION TERMS

AIC
Akaike Information Criterion a common metric for model selection that prevents overfitting of data by penalizing

models with higher numbers of parameters (𝑘)

• definition:

AIC = 2𝑘 − 2ln(�̂�)

asteroseismology the study of oscillations in stars

ACF
autocorrelation function in this context it is a small range of frequencies in the power spectrum surrounding the

solar-like oscillations, then the power array is correlated (or convolved) with a copy of the power array. This is
a helpful diagnostic tool for quantitatively confirming the p-mode oscillations, since they have regular spacings
in the frequency domain and therefore should create strong peaks at integer and half integer harmonics of ∆𝜈

background this basically means any other noise structures present in the power spectrum that are not due to solar-like
oscillations. This is traditionally parametrized as:

𝐵(𝜈) = 𝑊 +

𝑛∑︁
𝑖=0

4𝜎2
𝑖 𝜏𝑖

1 + (2𝜋𝜈𝜏𝑖)2 + (2𝜋𝜈𝜏𝑖)4

BCPS
background-corrected power spectrum the power spectrum after removing the best-fit stellar background model. In

general, this step removes any slopes in power spectra due to correlated red-noise properties

Note: A background-corrected power spectrum (BCPS) is an umbrella term that has the same meanings as a
background-divided power spectrum (BDPS) and a background-subtracted power spectrum (BSPS). Thus it is best
to avoid this phrase if at all possible since it does not specify how the power spectrum has been modified.

BDPS
background-divided power spectrum the power spectrum divided by the best-fit stellar background model. Using

this method for data analysis is great for first detecting and identifying any solar-like oscillations since it will
make the power excess due to stellar oscillations appear higher signal-to-noise

BSPS
background-subtracted power spectrum the best-fit stellar background model is subtracted from the power spec-

trum. While this method appears to give a lower signal-to-noise detection, the amplitudes measured through this
analysis are physically-motivated and correct (i.e. can be compared with other literature values)

BIC

113

pySYD Documentation, Release 6.10.5

Bayesian Information Criterion a common metric for model selection

cadence
the median absolute difference between consecutive time series observations

• variable: ∆𝑡

• units: s

• definition:
critically-sampled power spectrum when the frequency resolution of the power spectrum is exactly equal to the in-

verse of the total duration of the time series data it was calculated from

ED
echelle diagram a diagnostic tool to confirm that dnu is correct. This is done by folding the power spectrum (FPS)

using dnu (you can think of it as the PS modulo the spacing) – which if the large frequency separation is correct
– the different oscillation modes will form straight ridges. Fun fact: the word ‘echelle’ is actually French for
ladder

FFT
fast fourier transform a method used in signal analysis to determine the most dominant periodicities present in a light

curve

FPS
folded power spectrum the power spectrum folded (or stacked) at some frequency, which is typically done with the

large frequency separation to construct an echelle diagram

numax
frequency of maximum power the frequency corresponding to maximum power, which is roughly the center of the

Gaussian-like envelope of oscillations

• variable: 𝜈max

• units: 𝜇Hz

scales with evolutionary state, logg, acoustic cutoff

frequency resolution the resolution of a power spectrum is set by the total length of the time series (∆𝑇−1)

FWHM
full-width half maximum for a Gaussian-like distribution, the full-width at half maximum (or full-width half max)

is approximately equal to ±1𝜎

global properties in asteroseismology, the global asteroseismic parameters or properties refer to 𝜈max (numax) and
∆𝜈 (dnu)

granulation the smallest (i.e. quickest) scale of convective processes

Harvey-like component
Harvey-like model named after the person who first person who discovered the relation – and found it did a good job

characterizing granulation amplitudes and time scales in the Sun

Kepler artefact Kepler short-cadence artefact in the power spectrum from a short-cadence light curve occurring at the
nyquist frequency for long-cadence (i.e. ~270muHz)

Kepler legacy sample a sample of well-studied Kepler stars exhibiting solar-like oscillations (cite Lund+2014)

dnu

114 Chapter 5. Glossary of documentation terms

pySYD Documentation, Release 6.10.5

large frequency separation the so-called large frequency separation is the inverse of twice the sound travel time
between the center of the star and the surface. Even more generally, this is the comb pattern or regular spacing
observed for solar-like oscillations. It is exactly equal to the frequency spacing between modes with the same
spherical degree and consecutive :term:`radial order`s.

• variable: ∆𝜈

• units: 𝜇Hz

• definition:

∆𝜈 =

[︂
2

∫︁ 𝑅

0

d𝑟

𝑐

]︂−1

∝ 𝜌

light curve the measure of an object’s brightness with time

mesogranulation the intermediate scale of convection

mixed modes in special circumstances, pressure (or p-) modes couple with gravity (or g-) modes and make the spec-
trum of a solar-like oscillator much more difficult to interpret – in particular, for measuring the large frequency
separation

notching a process used to mitigate features in the frequency domain (e.g., mixed modes) by setting specific values to
the minimum power in the array

nyquist frequency the highest frequency that can be sampled, which is set by the cadence of observations (∆𝑡)

• variable: 𝜈nyq
• units: 𝜇Hz

• definition:

𝜈nyq =
1

2∆𝑡

Note: Kepler example

Kepler short-cadence data has a cadence, ∆𝑡 ∼ 60s. Therefore, the nyquist frequency for short-cadence Kepler data
is:

𝜈nyq =
1

2 · 60 s
× 106 𝜇Hz

1 Hz
≈ 8333𝜇Hz

oversampled power spectrum if the resolution of the power spectrum is greater than 1/T

p-mode oscillations
solar-like oscillations implied in the name, these oscillations are driven by the same mechanism as that observed in

the Sun, which is due to turbulent, near-surface convection. They are also sometimes referred to as p-mode
oscillations, after the pressure-driven (or acoustic sound) waves that are resonating in the stellar cavity.

power excess the region in the power spectrum believed to show solar-like oscillations is typically characterized by a
Gaussian-like envelope of oscillations, 𝐺(𝜈)

𝐺(𝜈) = 𝐴osc exp

[︂
− (𝜈 − 𝜈max)2

2𝜎2
osc

]︂
PSD
power spectral density when the power of a frequency spectrum is normalized s.t. it satisfies Parseval’s theorem

(which is just a fancy way of saying that the fourier transform is unitary)

• unit: ppm2 𝜇Hz−1

115

pySYD Documentation, Release 6.10.5

PS
power spectrum any object that varies in time also has a corresponding frequency (or power) spectrum, which is

computed by taking the fast fourier transform of the light curve. A general model to describe characteristics of
a power spectrum is generalized by the equation below, where 𝑊 is a constant (frequency-independent) noise
term, primarily due to photon noise. 𝐵 and 𝐺 correspond to the background and Gaussian-like power excess
components, respectively. Finally, 𝑅 corresponds to the response function, or the attenuation of signals due to
time-averaged observations.

𝑃 (𝜈) = 𝑊 + 𝑅(𝜈)[𝐵(𝜈) + 𝐺(𝜈)]

scaling relations empirical relations for fundamental stellar properties that are scaled with respect to the Sun, since it is
the star we know best. In asteroseismology, the most common relations combine global asteroseismic parameters
with spectroscopic effective temperatures to derive stellar masses and radii:

𝑅⋆

𝑅⊙
=

(︂
𝜈max

𝜈max,⊙

)︂(︂
∆𝜈

∆𝜈⊙

)︂−2(︂
𝑇eff

𝑇eff,⊙

)︂1/2

𝑀⋆

𝑀⊙
=

(︂
𝜈max

𝜈max,⊙

)︂3(︂
∆𝜈

∆𝜈⊙

)︂−4(︂
𝑇eff

𝑇eff,⊙

)︂3/2

whiten
whitening a process to remove undesired artefacts or effects present in a frequency spectrum by taking that frequency

region and replacing it with simulated white noise. This is typically done for subiants with mixed modes in order
to better estimate dnu. This can also help mitigate the short-cadence Kepler artefact.

116 Chapter 5. Glossary of documentation terms

CHAPTER

SIX

VISION OF THE PYSYD PROJECT

The NASA space telescopes Kepler, K2 and TESS have recently provided very large databases of high-precision light
curves of stars. By detecting brightness variations due to stellar oscillations, these light curves allow the application of
asteroseismology to large numbers of stars, which requires automated software tools to efficiently extract observables.

Several tools have been developed for asteroseismic analyses, but many of them are closed-source and therefore inac-
cessible to the general astronomy community. Some open-source tools exist, but they are either optimized for smaller
samples of stars or have not yet been extensively tested against closed-source tools.

Note: We’ve attempted to collect these tools in a single place for easy comparisons. Please let us know if we’ve
somehow missed yours – we would be happy to add it!

117

pySYD Documentation, Release 6.10.5

118 Chapter 6. Vision of the pySYD project

CHAPTER

SEVEN

ATTRIBUTION

7.1 Citations

7.1.1 Citing pySYD

If you make use of pySYD in your work, please cite our JOSS paper:

@article{2021arXiv210800582C,
author = {{Chontos}, Ashley and {Huber}, Daniel and {Sayeed}, Maryum and {Yamsiri}

→˓, Pavadol},
title = "{\texttt{pySYD}: Automated measurements of global asteroseismic␣

→˓parameters}",
journal = {arXiv e-prints},
keywords = {Astrophysics - Solar and Stellar Astrophysics, Astrophysics -␣

→˓Instrumentation and Methods for Astrophysics},
year = 2021,
month = aug,
eid = {arXiv:2108.00582},

pages = {arXiv:2108.00582},
archivePrefix = {arXiv},

eprint = {2108.00582},
primaryClass = {astro-ph.SR},

adsurl = {https://ui.adsabs.harvard.edu/abs/2021arXiv210800582C},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}

}

If applicable, please also use our ASCL listing as a software citation:

@misc{2021ascl.soft11017C,
author = {{Chontos}, Ashley and {Huber}, Daniel and {Sayeed}, Maryum and

→˓{Yamsiri}, Pavadol},
title = "{pySYD: Measuring global asteroseismic parameters}",

keywords = {Software},
year = 2021,
month = nov,
eid = {ascl:2111.017},

pages = {ascl:2111.017},
archivePrefix = {ascl},

eprint = {2111.017},
adsurl = {https://ui.adsabs.harvard.edu/abs/2021ascl.soft11017C},

(continues on next page)

119

https://arxiv.org/abs/2108.00582
https://ui.adsabs.harvard.edu/abs/2021ascl.soft11017C

pySYD Documentation, Release 6.10.5

(continued from previous page)

adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

Click here to see projects that have already used pySYD!

7.1.2 Citing SYD

pySYD is a python-based implementation of the IDL-based SYD pipeline, which was extensively used to measure as-
teroseismic parameters for Kepler stars. Since pySYD adapted the well-tested framework from SYD, we ask that you
please cite the original paper that discusses the asteroseismic analysis and methodology.

Important: This work was only possible thanks to many powerful Python libraries – we strongly encourage you to
also consider citing its dependencies.

7.2 Projects w/ pySYD

If you, someone you know, or a project you know about has made use of pySYD, please consider visiting and contributing
to the public Projects w/ pySYD thread in our GitHub repo.

Feel free to add anything and everything from early results, figure(s), student projects to published manuscripts, posters,
or any other pySYD-related shoutouts. We would love to see what you are using pySYD for firsthand!

120 Chapter 7. Attribution

https://ui.adsabs.harvard.edu/abs/2021arXiv210800582C/citations
https://ui.adsabs.harvard.edu/abs/2009CoAst.160...74H
https://github.com/ashleychontos/pySYD/discussions/28

CHAPTER

EIGHT

CONTRIBUTING

Jump to our community guidelines

8.1 The pySYD team

Our community continues to grow! See below to find out how you can help

8.1.1 Contributors

Main author: Ashley Chontos (email | website)

All contributors (listed alphabetically):
• Ashley Chontos (@ashleychontos)

• Sam Grayson (@charmoniumQ)

• Daniel Huber (@danxhuber)

• Maryum Sayeed (@MaryumSayeed)

• Pavadol Yamsiri (@pavyamsiri)

Important: pySYD was initially the Python translation of the IDL-based asteroseismology pipeline SYD, which was
written by my PhD advisor, Dan Huber, during his PhD in Sydney (hence the name). Therefore none of this would
have been possible without his i) years of hard work during his PhD as well as ii) years of patience during my PhD

~A very special shoutout to Dan~

8.1.2 Collaborators

We have many amazing collaborators that have helped with the development of the software, especially with the im-
provements that have been implemented – which have ultimately made pySYD more user-friendly. Many thanks to our
collaborators!

pySYD collaborators:
• Tim Bedding

• Marc Hon

• Dennis Stello

121

mailto:achontos@hawaii.edu
https://ashleyin.space
https://github.com/ashleychontos
https://github.com/charmoniumQ
https://github.com/danxhuber
https://github.com/MaryumSayeed
https://github.com/pavyamsiri

pySYD Documentation, Release 6.10.5

8.2 Community guidelines

For most (if not all) questions/concerns, checking our discussions forum is a great place to start in case things have
already been brought up and/or addressed.

If you would like to contribute, here are the guidelines we ask you to follow:

• Question or problem

• Issues & bugs

• New features

• Contributing code

• Style guide

• Testing

8.2.1 Question or problem

Do you have a general question that is not directly related to software functionality?

Please visit our relevant thread first to see if your question has already been asked. You can also help us keep this space
up-to-date, linking topics/issues to relevant threads and adding appropriate tags whenever/wherever possible. This is
not only helpful to us but also helpful for the community! Once we have enough data points, we will establish a forum
for frequently asked questions (FAQ).

Warning: Please do not open issues for general support questions as we want to preserve them for bug
reports and new feature requests ONLY. Therefore to save everyone time, we will be systematically closing all
issues that do not follow these guidelines.

If this still does not work for you and you would like to chat with someone in real-time, please contact Ashley to set up
a chat or zoom meeting.

8.2.2 Issues & bugs

Are you reporting a bug?

If the code crashes or you find a bug, please search the issue tracker first to make sure the problem (i.e. issue)
does not already exist. If and only if you do this but still don’t find anything, feel free to submit an issue. And, if
you’re really brave, you can submit an issue along with a pull request fix.

Ideally we would love to resolve all issues immediately but before fixing a bug, we first to need reproduce and confirm
it. There is a template of the required information when you submit an issue, but generally we ask that you:

• clearly and concisely explain the issue or bug

• provide any relevant data so that we can reproduce the error

122 Chapter 8. Contributing

https://github.com/ashleychontos/pySYD/discussions
https://github.com/ashleychontos/pySYD/discussions/37#discussion-3918112
mailto:achontos@hawaii.edu

pySYD Documentation, Release 6.10.5

• information on the software and operating system

You can file new issues by filling out our bug report template.

8.2.3 New features

Have an idea for a new feature or functionality?

Request

If you come up with an idea for a new feature that you’d like to see implemented in pySYD but do not plan to do this
yourself, you can submit an issue with our feature request template.

We welcome any and all ideas!

Direct implementation

However, if you come up with a brilliant idea that you’d like to take a stab at – Please first consider what kind of change
it is:

• For a Major Feature, first open an issue and outline your proposal so that it can be discussed. This will also
allow us to better coordinate our efforts, prevent duplication of work, and help you to craft the change so that it
is successfully accepted into the project.

• Any smaller or Minor Features can be crafted and directly submitted as a pull request. However, before you
submit a pull request, please see our style guide to facilitate and expedite the merge process.

8.2.4 Contributing code

Do you want to contribute code?

We would love for you to contribute to pySYD and make it even better than it is today!

Style guide

** A good rule of thumb is to try to make your code blend in with the surrounding code.

Code

• 4 spaces for indentation (i.e. no tabs please)

• 80 character line length

• commas last

• declare variables in the outermost scope that they are used

• camelCase for variables in JavaScript and for classes/objects in Python

• snake_case for variables in Python

8.2. Community guidelines 123

https://github.com/ashleychontos/pySYD/issues/new?assignees=&labels=&template=bug_report.md
https://github.com/ashleychontos/pySYD/issues/new?assignees=&labels=&template=feature_request.md

pySYD Documentation, Release 6.10.5

Docstrings

Coding Rules

To ensure consistency throughout the source code, keep these rules in mind as you are working:

• All features or bug fixes must be tested by one or more specs (unit-tests).

• We follow [Google’s JavaScript Style Guide][js-style-guide].

8.2.5 Testing

Click here to immediately get started!

124 Chapter 8. Contributing

BIBLIOGRAPHY

[C2014] Chaplin et al., 2014

[H2011] Huber et al., 2011

[L2017] Lund et al., 2017

[S2017a] Serenelli et al., 2017

[S2017b] Silva Aguirre et al., 2017

[Y2018] Yu et al., 2018

125

https://ui.adsabs.harvard.edu/abs/2014ApJS..210....1C
https://ui.adsabs.harvard.edu/abs/2011ApJ...743..143H
https://ui.adsabs.harvard.edu/abs/2017ApJ...835..172L
https://ui.adsabs.harvard.edu/abs/2017ApJS..233...23S
https://ui.adsabs.harvard.edu/abs/2017ApJ...835..173S
https://ui.adsabs.harvard.edu/abs/2018ApJS..236...42Y

pySYD Documentation, Release 6.10.5

126 Bibliography

PYTHON MODULE INDEX

p
pysyd, 18
pysyd.models, 46
pysyd.pipeline, 30
pysyd.plots, 59
pysyd.target, 32
pysyd.utils, 48

127

pySYD Documentation, Release 6.10.5

128 Python Module Index

INDEX

Symbols
--all, --showall, 102
--basis, 103
--bf, --box, --boxfilter, 103
--bin, --binning, 103
--bm, --mode, --bmode, 103
--ce, --cm, --color, 103
--cli, 104
--cv, --value, 103
--dnu, 104
--ew, --exwidth, 104
--file, --list, --todo, 105
--gap, --gaps, 105
--in, --input, --inpdir, 105
--infdir, 105
--info, --information, 106
--iw, --indwidth, 106
--laws, --nlaws, 106
--lb, --lowerb, 106
--le, --lowere, 106
--lp, --lowerp, 107
--lx, --lowerx, 107
--mc, --iter, --mciter, 107
--metric, 107
--notebook, 108
--nox, --nacross, 108
--noy, --ndown, --norders, 108
--npb, 108
--nt, --nthread, --nthreads, 108
--numax, 108
--of, --over, --oversample, 109
--out, --output, --outdir, 109
--peak, --peaks, --npeaks, 109
--rms, --nrms, 109
--se, --smoothech, 109
--sm, --smpar, 109
--sp, --smoothps, 110
--star, --stars, 110
--step, --steps, 110
--sw, --smoothwidth, 110
--thresh, --threshold, 110
--trials, --ntrials, 110

--ub, --upperb, 111
--ue, --uppere, 111
--up, --upperp, 111
--ux, --upperx, 111
-a, --ask, 102
-b, --bg, --background, 103
-d, --show, --display, 104
-e, --est, --estimate, 104
-f, --fft, 104
-g, --globe, --global, 105
-i, --ie, --interpech, 105
-k, --kc, --kepcorr, 106
-m, --samples, 107
-n, --notch, 107
-o, --overwrite, 108
-s, --save, 109
-v, --verbose, 111
-w, --wn, --fixwn, 112
-x, --stitch, --stitching, 112
-y, --hey, 112

A
ACF, 113
add_cli() (pysyd.utils.Parameters method), 49, 53
add_targets() (pysyd.utils.Parameters method), 49, 53
AIC, 113
Akaike Information Criterion, 113
asteroseismology, 113
autocorrelation function, 113

B
background, 113
background() (in module pysyd.models), 46
background-corrected power spectrum, 113
background-divided power spectrum, 113
background-subtracted power spectrum, 113
Bayesian Information Criterion, 114
BCPS, 113
BDPS, 113
BIC, 113
BSPS, 113

129

pySYD Documentation, Release 6.10.5

C
cadence, 114
check() (in module pysyd.pipeline), 30
check_cli() (pysyd.utils.Parameters method), 49, 53
check_data() (in module pysyd.plots), 59
check_numax() (pysyd.target.Target method), 32
collapse_ed() (pysyd.target.Target method), 32
collapsed_acf() (pysyd.target.Target method), 33
compute_acf() (pysyd.target.Target method), 33
compute_spectrum() (pysyd.target.Target method), 33
Constants (class in pysyd.utils), 48
correct_background() (pysyd.target.Target method),

34
create_benchmark_plot() (in module pysyd.plots), 59
critically-sampled power spectrum, 114

D
delta_nu() (in module pysyd.utils), 51
derive_parameters() (pysyd.target.Target method), 34
dnu, 114

E
echelle diagram, 114
echelle_diagram() (pysyd.target.Target method), 34
ED, 114
estimate_background() (pysyd.target.Target method),

35
estimate_numax() (pysyd.target.Target method), 35
estimate_parameters() (pysyd.target.Target method),

36

F
fast fourier transform, 114
FFT, 114
first_step() (pysyd.target.Target method), 36
fix_data() (pysyd.target.Target method), 36
folded power spectrum, 114
FPS, 114
frequency of maximum power, 114
frequency resolution, 114
frequency_spacing() (pysyd.target.Target method), 37
full-width half maximum, 114
fun() (in module pysyd.pipeline), 30
FWHM, 114

G
gaussian() (in module pysyd.models), 46
get_background() (pysyd.target.Target method), 37
get_background() (pysyd.utils.Parameters method),

49, 53
get_data() (pysyd.utils.Parameters method), 49, 54
get_defaults() (pysyd.utils.Parameters method), 49,

54

get_dict() (in module pysyd.utils), 51
get_epsilon() (pysyd.target.Target method), 38
get_estimate() (pysyd.utils.Parameters method), 50,

54
get_global() (pysyd.utils.Parameters method), 50, 54
get_infdir() (in module pysyd.utils), 51
get_inpdir() (in module pysyd.utils), 52
get_main() (pysyd.utils.Parameters method), 50, 54
get_outdir() (in module pysyd.utils), 52
get_output() (in module pysyd.utils), 52
get_parent() (pysyd.utils.Parameters method), 50, 55
get_plot() (pysyd.utils.Parameters method), 51, 55
get_samples() (pysyd.target.Target method), 38
get_sampling() (pysyd.utils.Parameters method), 51,

55
global properties, 114
global_fit() (pysyd.target.Target method), 38
granulation, 114

H
harvey_fit() (in module pysyd.models), 46
harvey_fourth() (in module pysyd.models), 46
harvey_none() (in module pysyd.models), 47
harvey_one() (in module pysyd.models), 47
harvey_regular() (in module pysyd.models), 47
harvey_second() (in module pysyd.models), 47
harvey_three() (in module pysyd.models), 47
harvey_two() (in module pysyd.models), 48
Harvey-like component, 114
Harvey-like model, 114

I
initial_estimates() (pysyd.target.Target method), 38
initial_parameters() (pysyd.target.Target method),

39
InputError, 48
InputWarning, 48

K
Kepler artefact, 114
Kepler legacy sample, 114

L
large frequency separation, 115
light curve, 115
load() (in module pysyd.pipeline), 30
load_file() (pysyd.target.Target method), 39
load_power_spectrum() (pysyd.target.Target method),

39
load_time_series() (pysyd.target.Target method), 40

M
make_plots() (in module pysyd.plots), 59

130 Index

pySYD Documentation, Release 6.10.5

mesogranulation, 115
mixed modes, 115
model_background() (pysyd.target.Target method), 41
module

pysyd, 18
pysyd.models, 46
pysyd.pipeline, 30
pysyd.plots, 59
pysyd.target, 32
pysyd.utils, 48

N
notching, 115
numax, 114
numax_gaussian() (pysyd.target.Target method), 41
numax_smooth() (pysyd.target.Target method), 41
nyquist frequency, 115

O
optimize_ridges() (pysyd.target.Target method), 42
oversampled power spectrum, 115

P
p-mode oscillations, 115
parallel() (in module pysyd.pipeline), 31
Parameters (class in pysyd.utils), 48, 53
plot() (in module pysyd.pipeline), 31
plot_1d_ed() (in module pysyd.plots), 60
plot_bgfits() (in module pysyd.plots), 60
plot_estimates() (in module pysyd.plots), 60
plot_light_curve() (in module pysyd.plots), 60
plot_parameters() (in module pysyd.plots), 60
plot_power_spectrum() (in module pysyd.plots), 60
plot_samples() (in module pysyd.plots), 61
power excess, 115
power spectral density, 115
power spectrum, 116
power() (in module pysyd.models), 48
process_star() (pysyd.target.Target method), 42
ProcessingError, 51
ProcessingWarning, 51
PS, 116
PSD, 115
pysyd

module, 18
pysyd.models

module, 46
pysyd.pipeline

module, 30
pysyd.plots

module, 59
pysyd.target

module, 32
pysyd.utils

module, 48

R
red_noise() (pysyd.target.Target method), 42
remove_artefact() (pysyd.target.Target method), 42
run() (in module pysyd.pipeline), 31

S
scaling relations, 116
select_trial() (in module pysyd.plots), 61
setup() (in module pysyd.pipeline), 31
setup_dirs() (in module pysyd.utils), 52
show_results() (pysyd.target.Target method), 43
single_step() (pysyd.target.Target method), 43
solar_scaling() (pysyd.target.Target method), 44
solar-like oscillations, 115
stitch_data() (pysyd.target.Target method), 44

T
Target (class in pysyd.target), 32

W
white() (in module pysyd.models), 48
white_noise() (pysyd.target.Target method), 45
whiten, 116
whiten_mixed() (pysyd.target.Target method), 45
whitening, 116

Index 131

	Getting started
	Installation
	Use pip
	Create an environment
	Clone from GitHub

	Dependencies
	Setup
	Make a local directory
	Initialize setup

	Quickstart
	Fun

	Crashteroseismology
	A quick timeout
	A crash course in asteroseismology
	Initialize script
	The steps
	1. Load in parameters and data
	2. Search and estimate initial values
	3. Select best-fit stellar background model
	4. Fit global parameters
	5. Estimate uncertainties

	Running your favorite star

	pySYD library
	Introduction
	Reproducible Kepler mision results
	Related Tools
	References

	pySYD paths
	pySYD inputs
	Required
	Cases
	Case 1: light curve and power spectrum
	Case 2: light curve only
	Case 3: power spectrum only
	Case 4: no data

	Optional
	Target list
	Star info

	Software modes
	Running as a script
	Importing as a module
	Pipeline overview
	Introduction
	Imports
	Pipeline modes
	Examples
	pysyd.pipeline API

	Target class
	Introduction
	Imports
	Usage
	pysyd.target API

	Models & utilities
	Introduction
	Imports
	Usage
	Examples
	Models
	Utilities

	Saved outputs
	Files
	1. ID_PS.txt
	2. ID_BSPS.txt
	3. ID_BDPS.txt
	4. estimates.csv
	4. global.csv
	5. samples.csv

	Figures
	1. background_only.png
	2. bgmodel_fits.png
	3. global_fit.png
	4. power_spectrum.png
	5. samples.png
	6. search_&_estimate.png
	7. time_series.png

	Takeaway
	API

	What next?
	TL;DR

	User guide
	Introduction
	CLI help
	Sections

	High-level functionality
	aka the parent_parser

	Data analyses
	aka the data_parser

	Core asteroseismic analyses
	aka the main_parser
	Search & estimate
	Background fit
	Global parameters
	Sampling & uncertainties

	Plotting
	aka the plot_parser

	Single star applications
	A diablo detection
	Run 1:
	Run 2:
	Run 3:
	Run 4:

	A hot-to-fire detection
	A mild detection
	No SNR: KIC 6278992

	Star sample
	Regular mode
	Parallel mode

	Advanced options
	Changing the fractional width of the power excess
	via –ew & –exwidth

	Mitigating known Kepler artefacts
	via -k, –kc & –kepcorr

	Hard-wiring the lower/upper limits of the power excess
	via –lp & –lowerp

	I’m not sure how I feel about this one
	via –npeaks & –peaks

	Provide estimate for numax and save some time
	via –numax

	Setting different frequency limits for the
	via –ux & –upperx

	Smooth the echelle diagram by using matplotlib’s built-in interpolator
	via -i, –ie & –interpech

	Interactive usage
	Single star
	This notebook is a basic runthrough for a single star from beginning to end
	KIC 2309595
	Step 1. Load pySYD default parameters
	Step 2. Add a target (or any number of targets)
	Step 3. Create pipeline Target
	Step 3. Estimate parameters
	Step 4. Derive parameters
	Step 5. Derive uncertainties
	Step 6. Peep results

	Condensed version
	Estimating max hacks
	For first-time users, we’ll assume you do not know what max is for a given star [and that’s totally ok]
	max hack summary
	Load in default settings for KIC 1435467
	Plot estimates

	Option 1: enter the trial number
	Option 2: provide your own estimate
	Option 3: Provide upper limit

	pySYD option glossary
	et al.

	Glossary of documentation terms
	Vision of the pySYD project
	Attribution
	Citations
	Citing pySYD
	Citing SYD

	Projects w/ pySYD

	Contributing
	The pySYD team
	Contributors
	Collaborators

	Community guidelines
	Question or problem
	Issues & bugs
	New features
	Request
	Direct implementation

	Contributing code
	Style guide
	Code
	Docstrings
	Coding Rules

	Testing

	Bibliography
	Python Module Index
	Index

